A STUDY OF FORCE FIELDS FOR TETRAHEDRAL MOLECULES AND IONS*

L.J. BASILE, J.R. FERRARO, P. LaBONVILLE, and M.C. WALL, S.M.C. Argonne National Laboratory, Argonne, Illinois 60439 (U.S.A.) (Received December 4th, 1972)

CONTENTS

A. Introduction	0
B. Molecular force fields for tetrahedral molecules	0
C. Calculations of force constants	0
D. Results and discussion	0
(i) Comparison of force fields	0
(ii) Discussion of force constants	0
(iii) Frequency trends	0
(iv) Potential energy distribution (PED)	0
References	n

A. INTRODUCTION

Six years have elapsed since Müller et al. ^{1,2} presented their study of the Normal Coordinate Treatment (NCT) of some 67 tetrahedral molecules and ions. In this period of time, the laser technique in Raman spectroscopy has become a valuable tool. More and more tetrahedral molecules and ions (some highly colored) have now been studied by this method. Certainly, the frequency assignments can now be considered to be more reliable than previous results. Thus a re-examination of this problem seemed in order.

In this study 146 entries appear. The most recent experimental data have been used wherever possible. The number of studies in this field has proliferated immensely, and during the course of our preparation of this paper, new studies have appeared. We have used these newest data in the cases where significant differences in frequency assignments from the older data existed. Our results present the nature of the experiment performed, and

^{*} Work performed under auspices of the U.S. Atomic Energy Commission.

^{*} To whom correspondence should be addressed.

^{**} Resident Associate under AUA-ANL Fellowship Program from the University of Detroit, Detroit, Michigan, July 1969—December 1970.

[‡] Resident Associate under Faculty Research Participation Program from Rosemont College, Rosemont, Pa., June-August 1971.

whether the frequencies used were obtained from Raman or infrared data. In order to keep the size of this manuscript within a reasonable length, we have chosen to ignore hydrogenic tetrahedral molecules for the present.

Our objective has been to compare the three force fields commonly used for T_d molecules — the Urey—Bradley (UBFF), orbital valence (OVFF), and general valence force fields (GVFF). We have also examined and compared the force constants obtained from these force fields, and cited trends wherever any existed.

The molecules studied included 7 tetrafluorides, 37 tetrachlorides, 21 tetrabromides, 18 tetraiodides, 44 oxygenated ions (MO_4^n) , 8 thio ions (MS_4^n) , 5 seleno ions (MS_4^n) , and 6 miscellaneous compounds.

B. MOLECULAR FORCE FIELDS FOR TETRAHEDRAL MOLECULES

Several monographs and review articles have recently appeared in the literature on the theory of molecular force fields; hence for the sake of brevity, we shall not dwell at length on this subject ³⁻⁸.

In dealing with a tetrahedral molecule four frequencies are found to be vibrationally allowed, $\Gamma_{\text{vib}} = A_1(R) + E(R) + 2F_2(IR,R)$. One is confronted with the problem of finding the force field which best accounts for the forces within the molecule and has fewer force constants than the observed frequencies. Both the UBFF $^{9-11}$ and the OVFF 12 offer a solution to the problem. In the UBFF the force constants are K (force constant for stretching along a bond); H (force constant for angle deformation $(\Delta \alpha)$); F and F' (force constants for interactions between non-bonded atoms). In the case of the OVFF the symbol D replaces H, and corresponds to the Heath and Linnett 12 angle based on overlap of orbitals $(\Delta \beta)$; otherwise, the remaining force constants are the same. Although four force constants are required by both fields, one of the force constants F' is usually taken as $-\frac{1}{10}F$ for T_d molecules. This reduces the number of force constants to three, and allows a degree of freedom for the least-squares analysis. We recognize that we might have chosen other values for F'. However, for many of the molecules studied in this paper the use of a Lennard—Jones potential failed because of the steepness in the repulsive portion of the curve. Thus, a meaningful value of F' in terms of F was unavailable from this method.

The potential energy functions for T_d molecules using the UBFF and the OVFF may be expressed as

UBFF:

$$2V = (K + 2F + F') \sum_{i}^{4} \Delta r_{i}^{2} + r_{0}^{2} (H + \frac{1}{3}F - \frac{5}{3}F') \sum_{i,j}^{6} (\Delta \alpha_{i,j})^{2}$$

$$+ 2(\frac{2}{3}F - \frac{1}{3}F') \sum_{i,j}^{6} \Delta r_{i} \Delta r_{j} + 2r_{0} \left[\frac{\sqrt{2}}{3} (F + F') \sum_{i,i,j}^{12} \Delta r_{i} \Delta \alpha_{i,j} \right]$$

$$+ 2r_{0}^{2} (-\frac{2}{3}F') \sum_{i,i,k}^{12} \Delta \alpha_{i,j} \Delta \alpha_{i,k}$$

$$(!)$$

Here Δr and $\Delta \alpha$ are the changes in bond lengths and bond angles between non-bonded atoms. The symbols K, H, F and F' have been previously defined. The symbol r_0 refers to the bond distance at the equilibrium position.

OVFF:

$$2V = (K + 2F + F') \sum_{i}^{4} \Delta r_{i}^{2} + r_{0}^{2} (\frac{1}{2}D + \frac{1}{3}F - \frac{5}{3}F') \sum_{i,j}^{6} \Delta \beta_{ij}^{2}$$

$$+ 2(\frac{2}{3}F - \frac{1}{3}F') \sum_{i,j}^{6} \Delta r_{i} \Delta r_{j} + 2r_{0} [\frac{\sqrt{2}}{3}(F + F') \sum_{i,i,j}^{12} \Delta r_{i} \Delta \beta_{ij}]$$

$$+ 2r_{0}^{2} (\frac{1}{2}D - \frac{2}{3}F') \sum_{i,i,k}^{12} \Delta \beta_{ij} \Delta \beta_{ik}$$
(2)

The symbolism is equivalent to that used in the UBFF expression above except that $\Delta\beta$ replaces $\Delta\alpha$.

The differences between the UBFF and the OVFF relate to the fact that the UBFF expresses the bending force constant H in terms of $\Delta \alpha$, a change in the angle between two bonds, while the OVFF expresses the bending constant D in terms of $\Delta \beta$, a change in the position of the axis of the bonding orbital associated with the bending vibration. This change in the position of the axis is due to a rehybridization ¹³ of the bonding orbitals that takes place during the bending motion of the molecule.

The GVFF for T_d molecules requires seven force constants to describe the forces taking place in the T_d molecule. In the GVFF the force constants are: f_t (force constant for stretching along a bond); f_m (force constant for stretching interaction along two bonds); f_lpha (force constant for angle deformation); $f_{\alpha\alpha}$ (force constant for interaction between two adjacent angle deformations); $f_{m'}$ (force constant for interaction between angle deformations having no common bond); $f_{r\alpha}$ (force constant for interaction between a stretch and an adjacent angle deformation); $f_{m'}$ (force constant for interaction between a stretch and an angle deformation having no common bond). Even then, repulsion forces between non-bonded atoms are neglected. Since we observe only four frequencies, the number of force constants must be reduced so that one degree of freedom is allowed for the least-squares analysis. Certain approximations can be made. The usual practice is to reduce the number of force constants to five by assuming that the force constants associated with the stretch-bend $(f_{r\alpha'})$ and angle—angle $(f_{an'})$ interactions are zero since the two internal coordinates do not share a common bond. However, we have used the multiple regression analysis of Schachtschneider and Snyder 14 to find those starting force constants for the T_d field to which the calculated frequencies are most sensitive. The constants f_{α} and f_{r} for the pair of compounds SiH₄ and SiD_4 were used and were refined by the perturbation technique, while all other constants were held fixed at zero. The multiple regression analysis added those interaction constants

which gave the greatest improvement of fit between the observed and calculated frequencies. The regression analysis was not carried out directly on the halide species since isotopic data for these were not readily available. The results indicated that for the GVFF, four constants were necessary, and since we are dealing with four frequencies this obviously gave a perfect fit between the observed and calculated frequencies. In addition to the diagonal constants f_r and f_{α} , the necessary interaction terms chosen by the regression technique were f_{rr} and $f_{\alpha r}$.

The potential energy function for a T_d molecule for the constrained GVFF is therefore, given by the expression

$$2V = f_r \sum_{i}^{6} \Delta r_i^2 + r_0^2 f_{\alpha} \sum_{i,j}^{6} (\Delta \alpha_{i,j})^2 + f_{rr} \sum_{i,j}^{6} \Delta r_i \Delta r_j + 2r_0 (f_{r\alpha}) \sum_{i,i,j}^{12} \Delta r_i \Delta \alpha_{ij}$$

$$+ 2r_0^2 (f_{\alpha\alpha}) \sum_{i,i,k}^{12} \Delta \alpha_{ij} \Delta \alpha_{ik}$$
(3)

It should be emphasized that other force constant interactions which we have failed to consider might have proved to be more important for certain families of compounds. However, an exhaustive search for such interactions was beyond the scope of this paper.

C. CALCULATIONS OF FORCE CONSTANTS

In the calculations the force constants were adjusted until the calculated frequencies gave the best fit with the observed frequencies. The calculations were performed on an IBM 360 computer using Yeranos's ¹⁵ NCT and Schachtschneider and Snyder's ¹⁴ FADJ programs. The systems converged with about 4–5 perturbations for all force fields (with some small number of exceptions for the GVFF). Molecules in which the cation was smaller than the anion resulted in 15 cases which were found to diverge for the GVFF only, and no adjustment corrections were possible. Similar observations have been previously made ¹⁶. This divergence is undoubtedly due to our neglect of interaction constants to account for the large Coriolis interactions commonly exhibited by these lighter molecules.

The final results gave the calculated frequencies, the converged force constants, the L matrix (transformation from symmetry coordinates to normal coordinates), and the potential energy distribution (PED) of the force constants and frequencies. The F and G matrices appear in Table 1.

The method included a refinement in x where

$$\chi = \delta \lambda' \cdot W \delta \lambda$$
 (4)

obtained a minimum, and changes in the F matrix were made so small that the changes in the frequencies were negligible, i.e.

$$L_{NN-1}G_{0}(F_{0} + \Delta F_{NN})L_{NN} = \Lambda_{NN} \cong \Lambda_{NN-1}$$
 (5)

TABLE 1

F and G matrices obtained for UBFF, OVFF and GVFF for AB_4 molecules and ions

		F matrix		
Mode	G matrix	UBFF a	OVFF a	GV FF
A ₁	$G_{11} = \mu_{\mathbf{B}}$	$F_{11} = K + 4F$	$F_{11} = K + 4F$	$F_{11} = (f_p + 3f_{pp})$
E	$G_{22}=3\mu_{\mathrm{B}}$	$F_{22} = H + \frac{1}{3}F - \frac{1}{3}F'$	$F_{22} = \frac{1}{3}D + \frac{1}{3}F - \frac{1}{3}F'$	$F_{22} = (f_{\alpha} - 2f_{\alpha \alpha})$
F_2	$G_{33} = \frac{4}{3}\mu_{\rm A} + \mu_{\rm B}$	$F_{33} = K + \frac{4}{3}(F + F')$	$F_{33} = K + \frac{4}{3}F + \frac{4}{3}F'$	$F_{33}=(f_r-f_{rr})$
	$G_{34} = G_{43} = -\frac{8}{3}\mu_{\hat{\mathbf{A}}}$	$F_{34} = F_{43} = \frac{2}{3}(F + F')$	$F_{34} = F_{43} = -\frac{2}{3}(F + F')$	$F_{34} = F_{43} = 0$
	$G_{44} = \frac{16}{3}\mu_{A} + 2\mu_{B}$	$F_{44} = H + \frac{1}{3}F - \frac{5}{3}F'$	$F_{44} = \frac{1}{2}D + \frac{1}{3}F - \frac{5}{3}F$	$F_{44} = f_{\alpha}$

² For the UBFF and the OVFF the assumption $F' = -\frac{1}{10}F$ was used.

T_d symmetry coordinates

A vibration

$$R_1 = \frac{1}{2}(\Delta d_1 + \Delta d_2 + \Delta d_3 + \Delta d_4)$$

$$R_2 = \frac{1}{\sqrt{6}} (\Delta \alpha_{12} + \Delta \alpha_{23} + \Delta \alpha_{31} + \Delta \alpha_{14} + \Delta \alpha_{24} + \Delta \alpha_{34}) = 0$$

E vibration

$$R_{3a} = \frac{1}{\sqrt{12!}}(2\Delta\alpha_{12} - \Delta\alpha_{23} - \Delta\alpha_{31} - \Delta\alpha_{14} - \Delta\alpha_{24} + 2\Delta\alpha_{34})$$

$$R_{3b} = \frac{1}{2}(\Delta\alpha_{14} - \Delta\alpha_{31} + \Delta\alpha_{23} - \Delta\alpha_{24})$$

F vibrations

$$R_{4_3} = \frac{1}{\sqrt{12}} (2\Delta \alpha_{12} - \Delta \alpha_{23} - \Delta \alpha_{31} + \Delta \alpha_{14} + \Delta \alpha_{24} - 2\Delta \alpha_{34})$$

$$R_{4b} = \frac{1}{\sqrt{6}} (\Delta \alpha_{12} + \Delta \alpha_{23} + \Delta \alpha_{31} - \Delta \alpha_{14} - \Delta \alpha_{24} - \Delta \alpha_{34})$$

$$R_{40} = \frac{1}{2}(\Delta \alpha_{23} - \Delta \alpha_{31} - \Delta \alpha_{14} + \Delta \alpha_{24})$$

$$R_{52} = \frac{1}{\sqrt{6}} (\Delta d_1 + \Delta d_2 - 2\Delta d_3)$$

$$R_{5b} = \frac{1}{\sqrt{12}} (\Delta d_1 + \Delta d_2 + \Delta d_3 - 3\Delta d_4)$$

$$R_{5C} = \frac{1}{\sqrt{2}}(\Delta d_2 - \Delta d_1)$$

where NN denotes the iteration number. The weighting element W was used, where $W = 1/\lambda$, according to Mann et al. ¹⁷ to ensure a fit on a percentage basis.

D. RESULTS AND DISCUSSION

(i) Comparison of force fields

A comparison of the OVFF and UBFF is made for the main-family and transition-metal tetrahalides and for the main-family and transition-metal oxy-, thio and seleno-anions (e.g. MO_4^n , MS_4^n , MSe_4^n). This comparison is made in Tables 2–13. Also included in these tables are the average percent deviation of the stretching modes (ν_1, ν_3) and the bending modes (ν_2, ν_4) . The tables contain experimental details and references. The source of the data relating to observed frequencies (for example Raman and/or IR) is also indicated.

In the case of tetrahedral molecules one is dealing with four experimental frequencies and three force constants in the OVFF and UBFF. With so few parameters to work with, any modification of these force fields without corollary data would not be very significant. A comparison with the GVFF was not possible since this field involved four experimental frequencies and four force constants, and a perfect fit of theoretical frequencies with the experimental frequencies was obtained. (Since the frequencies calculated by the GVFF agree with those observed, they are not included in the tables.) However, the GVFF was included in this study because it provided a third set of force constants.

(a) Main-family tetrahalides

Tables 2-5 include the experimental frequencies and those calculated from the OVFF and the UBFF for the main-family tetrahalides. It may be observed that the OVFF gives a better fit in 34 of 40 cases where a clear-cut distinction may be made. In 6 cases no distinction may be observed, and both fields appear to fit equally well. In 9 cases one force field gives a better fit for ν_1 , ν_3 stretching modes, and the other field a better fit for the ν_2 , ν_4 bending vibrations. In the case of 11 gaseous molecules in this group, both fields appear to determine the forces within the molecule equally well.

(b) Transition-metal tetrahalides

Tables 6-8 include the experimental frequencies and those calculated by the OVFF and the UBFF for the transition-metal tetrahalides. Only slight differences in the calculated force fields are noted.

(c) Main-group oxygenated anions (MO4n)

Table 9 compiles data for the main-group MO_4^n oxyanions. Of the ten anions represented, the OVFF gives by far the best fit with the experimental frequencies.

(d) Transition-metal oxygenated anions (MO_4^n)

Table 10 lists the data for the transition-metal oxyanions. In 22 of 29 cases, the UBFF

Observed and calculated fundamental frequencies for main-family tetrahalides (cm⁻¹). I. Fluorides TABLE 2

Molecule		A ₁ (v ₁)	$E(v_2)$	$F_2(\nu_3)$	F2 (V4)	Average % deviation		Experimental details	Ref.
						£a +1a	P2, P4		
BeF4	Obs. OVFF	547(R) 548	255(R) 275 267	801 801 798	385(R) 364 369	0.15	6.7	Li ₂ BeF ₄ (melt) at 487°C – Raman – 4880 A exciting line –	34
BF4 (solid)	Obs. OVFF UBFF	769(R) 770 774	353(R) 359 365	984(R) ^a 984 983	524(R) 519 510	0.06	1.4	NaBF4(solid) Raman 4358 A exciting line Hg arc	43, 44
BF4 (melt)	Obs. OVFF UBFF	777(R) 777 784	360(R) 385 375	1070(R) 1071 1068	533(R) 508 514	0.05	5.8 2.5	NaBF4(melt) at 414°C – Raman – 4880 A exciting line – At*laser	45
CF4	Obs. OVFF UBFF	908(R) 909 918	435(R) 442 457	1283(IR/R) 1283 1280	632(IR/R) 625 605	0.08 0.64	t. 4.	Infrared (gas); Raman spectrum (gas) – 4358 A exciting line – Hg arc	46 48
SiF4	Obs. OVEF UBFF	801(R) 801 811	264(R) 278 291	1032(IR/R) 1032 1025	389(IR/R) 377 356	0.03 0.92	4.1 9.4	Infrared (gas); Raman spectum (gas) - 4358 A exciting line + Hg are	46-48
GeF4	Obs. OVFF UBFF	738(R) 737 743	205 <i>b</i> 212 219	800(1R) 801 796	260(IR) 254 242	0.11 0.62	2.8 6.9	Infrared spectrum (gas); Raman spectrum (gas) — 4358 A, 4046 A exciting lines — Hg arc	48,49
TiF 4(gas)	Obs. OVFF UBFF	712(R) 709 709	185(R) 190 177	793(R) 795 795	209(R) 206 216	1.5 1.5	1.6 3.4	Raman spectrum (gas) at 300°C; At laser	20

 $[^]d$ Average of observed doublet. b Estimated to give best fit. (R) Frequency obtained from Raman data. (IR) Frequency obtained from infrared data.

TABLE 3

Observed and calculated fundamental frequencies for main-family tetrahalides (cm⁻¹). II. Chlorides

Observed and	Observed and calculated	iningamenta i	or salamenta	tundamentu itequencies for main-iamily letrahandes (cm -). 11. Unlottaes) santrilleria	ш. т. с	ortaes		
Molecule		A1(P1)	E(v1)	F2(v3)	F2(v4)	Average % deviation		Experimental details	Ref.
						P1, P3	ν2, ν4		
•	Obs.	252(R)	100(R)	330(R)	142(R)			K2 MgCl4 (melt) - Raman;	51
MgCL4	OVFF	252	001	330	142	0.00	0.0	frequencies < 100 cm ⁻¹ -	
	UBFF	251	106	331	138	0.35	2.8	5682 A, 6471 A exciting lines; frequencies > 100 cm ⁻¹ - 4880 A, 5145 A exciting lines	
	Obs.	405(R)	190(R)	670(1R)	274(R)			IR: (C2H4) (i-C3H2), NHBC14	52
BC14	OVFF	405	198	0.29	566	0.00	3.6	in CH ₂ Cl ₂ ; (CH ₃) ₄ NBCl ₄ soln,	
	UBFF	406	191	0.29	273	0.01	0.45	in lig. SO ₂ ; Raman: 4358 A — Hg arc	
	Obs.	351(R)	121(R)	490(R)	186(R)			AICI3-NaCl melt (225°C) -	53, 54
AICI4	OVFF	351	126	490	182	0.00	3.3	Reman 5145 A, 4880 A ex-	
	UBFF	354	129	489	178	0.49	5.3	citing Lines	
	Obs.	346(R)	114(R)	386(R)	149(R)			HGaCI4 aqueous soln	55-57
GaCl.	OVFF	346	115	386	148	0.07	0.55	Raman - 4358 A - Hg arc	
	UBFF	347	118	385	145	0.23	5.9		
-	Obs.	321(R)	89(R)	337(R)	112(R)			HInCl4 aqueous soln	56, 57
InCl4	OVFF	321	92	337	110	0.14	2.5	Raman - 4358 A - Hg arc	
	UBFF	322	33	336	108	0.26	3.5		
	Obs.	312(R)	60(R)	296(R)	78(R)			(CoHs)4AsTiCl4 soln, in aceto-	32
TCI4	OVFF	308	89	599	69	1.1	12.6	nitrile - Roman 4358 A -	
	UBFF	312	62	536	92	0.11	5.6	Hg arc	
	Obs.	458(R)	218(R)	776(R) ^a	314(R)			Liquid Raman 4358 A	46, 58,
CC14(liq.)	OVFF	458	21.7	176	315	0.03	0.52	Hg arc	89
	UBFF	460	222	922	309	0.25	3,8		
	Obs.	456(R)	217(R)	791(R)	315(R)			CCl4(solid) - 77°K - Raman -	60,61
CCl4 (solid)		457	227	191	308	0.11	3.2	4880 A Ar laser	
		459	223	190	308	0.40	2.2		

CCl₄(gas)	Obs. OVFF UBFF	460(R) 461 463	214(R) 225 220	793(R) 79 3 79 2	313(R) 303 306	0.11 0.39	2.5	Vapor-Raman-4880 A, 5145 A exciting lines of Ar- laser and 6471 A exciting line of Kr laser	47
SICL4(Liq.)	Obs. OVFF UBFF	424(R) 424 427	150(R) 152 159	621(IR) 621 619	221(R) 219 212	0,01 0 ,51	1.2	LiquidRaman 4358 A Hg arc, IR-vapor	46, 58, 59
SiCl ₄ (gas)	Obs. OVFF UBFF	423(R) 421 427	145(R) 157 156	616(R) 617 614	220(R) 210 209	0.30 1.06	6.3	Vapor-Raman-4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	47
SiCl ₄ (soiid)	Obs. OVFF UBFF	419(R) 418 421	152(R) 160 160	612(R) 613 611	221(R) 214 212	0.31 0.45	4.2 6.3	Solid Raman at 80°K 4880, 5280, 4280 A exciting lines	59
GeCl4(liq.)	Obs. OVFF UBFF	396(R) 396 397	134(R) 133 139	45 3(R) 453 452	172(R) 173 167	0.01	0.53 3.3	Liquid-Raman-4358 A - Hg	46, 55, 58, 59
GeCl4(gas)	Obs. OVFF UBFF	396(R) 393 399	125(R) 134 134	459(R) 461 457	171(R) 163 161	0.44 0.44	6.7	Vapor-Raman-4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	47
Obs. GeCl4(solid) OVFF UBFF	Obs. OVFF UBFF	392(R) 391 394	134(R) 138 139	457(R) 458 456	171(R) 168 165	0.24	3.6	Solid — Raman at 80°K — 5682, 6471 A exciting lines	61
SnCL4(liq.)	Obs. OVFF UBFF	366(R) 366 369	104(R) 107 111	403(R) 403 401	134(R) 131 125	0.10 0.62	2.6 6.9	Liquid-Raman-4358 A Hg arc	46, 58, 59
SnCl4(ps)	Obs. OVFF UBFF	369(R) 365 372	95(R) 103 103	408(R) 411 406	126(R) 119 116	0.40 0.62	6.9	Vapor-Ramon-4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	47
Obs. SnCI4(solid) OVFF UBFF	Obs. OVFF UBFF	364(R) 363 366	108(R) 111 113	405(R) 406 404	130(R) 128 124	0.26 0.35	2.2 4.6	Solid — Raman at 80°K — 5280, 5682 A excling lines	61 ^b
PbCl4(liq.)	Obs. OVFF UBFF	327(R) 328 327	90(R) 83 89	348(R) 347 348	90(R) 95 91	0.29 0.07	6.6 0.78	Liquid-Raman-0°C4358 A Hg arc	62

_
•
-
•
_
_
_
=
_
_
_
=
J
ح
<u>ت</u>
<u>ت</u>
-
-
G)
-
G)
Щ
G)
BLE
BLE
Щ
BLE

Molecule		$A_1(v_1)$	$E(\nu_2)$	$F_2(v_3)$	F ₂ (v ₄)	Average % deviation	:	Experimental details	Ref.
						P1, P3	P2, P4		
PbCl4(solid)	Obs. OVFF UBFF	325(R) 322 329	90(R) 97 99	345(R) 348 342	116(R) 109 102	0.90	6,9 11.0	Solid – Raman at 80°K– 5682, 6471 A exciting lines	61
PCI4	Obs. OVFF UBFF	458(R) 458 462	171(IR/R) 175 183	658(R) 658 656	251(IR/R) 248 238	0.01	1.6	PCI _S (solid) - Raman - 4358 A - Hg arc; IR solid deposition at 90°C	63
AsCl4+	Obs. OVFF UBFF	422(R) 422 423	156(R) 148 159	500(R) 500 499	187(R) 193 184	0.07	4.1 1.8	AsF ₃ Cl ₂ (solid) Raman 4358 A Hg arc	2
SbCl4	Obs. OVFF UBFF	353(R) 354 353	143(R) 131 144	399(R) 399 399	153(R) 161 152	0.12 0.10	7.0 0.87	SbCl ₄ F in CCl ₄ and CHCl ₃ solnRaman – 4358 A – Hg arc	65

a Average of doublet.
b The most recent datu on solid SnCl₄ appear in ref. 111.
(R) Frequency obtained from Raman data.
(IR) Frequency obtained from infrared data.

TABLE 4

Observed a	Observed and calculated		fundamental frequencies for main-family tetrahalides (cm ⁻¹). III. Bromides	ır main-family	tetrahalides ((cm 1). III. Br	omides		
Molecule		A1(v1)	£ (v2)	$F_2(\nu_3)$	$F_2(\nu_4)$	Average % deviation	_	Experimental details	Ref.
						V1, V3	V2, V4		
MgBr4 ²	Obs. OVFF	150(R) 150	61(R) 62	290(R) 290	90(R) 89	0.00	1.4	K2MgBr4(melt) Raman; frequencies < 100 cm ⁻¹ ;	51
	UDFF	150	49	290	88	0,00	3.6	5682 A, 6471 A exciting lines; frequencies > 100 cm ⁻¹ : 4880 A, 5145 A exciting lines	
BBr	Obs. OVEF	243(R) 242	117(R)	605(IR) 605	166(R) 169	0.17	2.0	Raman and IR of (C2H5) (i-C3H-1), NHBBra in CH5Cl5;	25
	UBFF	243	111	909	166	0.01	0.00	Raman: 4358 A exciting line – Hg arc	
t	Obs	214(R)	76(R)	405(IR)	118(R)	•	!	Raman of (CH3)4 NAIBra (solid) 54, 66	34,66
AlBra	OVFF	214 215	23	405 405	117	0.01 0.30	3.3	with He—Ne excitation; IK Nujol mull and solution in nitromethane or acetonittie	1 S
ı f	Obs.	210(R)	71(R)	278(R)	102(R)	ā	e e	HGaBra in aqueous solution -	19
GaBr₄	UBFF	210 211	22	278 278	100	0.17	0.58 2.0	Roman – 4358 A exciting tine – Hg arc	
, de	Obs.	197(R)	55(R) 58	239(R) 239	79(R)	013	3.6	HinBra in aqueous solution — Roman — 4358 A. 4046 A. ex-	89
*	UBFF	198	3 % 8	238	92	0.35	4.4	citing lines - Hg arc	
i F	Obs.	190(R)	51(R)	209(R)	64(R)	900	ç	TiBra in alcohol — Raman —	63,69
41011	UBFF	190	2 22	5 06	. 63	0.00	1.8		
1	Obs.	267(R)	123(R)	672(R)	183(R)	6	ç c	CBra (solid) in CCla solution -	
** ***	OVFF	267 269	123 126	672 672	183 179	0.33	2.4	Kaman – 4338 A exciung line – Hgarc	۰ کو د

TABLE 4 (continued)

Molecule		$A_1(\nu_1)$	$E(\nu_2)$	$F_2(\nu_3)$	$F_2(v_4)$	Average % deviation	<i>10</i>	Experimental detalls	Ref.
						21,193	P4 'E4		
SiDr4 (tiq.)	Obs. OVFF UBFF	249(R) 249 251	90(R) 91	487(R) 487 486	137(R) 137 136	0.01	0.38	Liquid – Raman – 4358 A exciting line – Hg arc	46, 58, 59, 70
SiBr ₄ (gas)	Obs. OVEF UBFF	246(R) 245 248	85(R) 91 91	494(R) 494 493	134(R) 129 127	0.20 0.51	5.4	Vapor – Raman – 4880 Å, 5145 Å exciting lines of At- laser and 6471 Å exciting line of Kt laser	47
GeBr4(liq.)	Obs. OVFF UBFF	235(R) 235 236	79(R) 79 82	327(R) 327 326	112(R) 112 109	0.00	0.17	Liquid — Raman — 4358 A exciting line — Hg are	46, 58, 59, 70
GeBr4(தಾs)	Obs. OVFF UBFF	236(R) 235 238	75(R) 81 80	332(R) 333 331	111(R) 106 106	0.36	6.3 5.6	Vapor – Raman – 4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	47
SnBr4(líq.)	Obs. OVFF UBFF	220(R) 220 221	64(R) 65 67	279(R) 279 278	88(R) 88 84	0.01 0.42	0.87	Liquid — Raman — 4358 A exciting line — Hg are	58, 59, 68, 70
SnBr4(pas)	Obs. OVFF UBFF	222(R) 220 224	59(R) 64 64	284(R) 285 283	86(R) 23 80	0.63	6.6	Vapor – Raman – 4880 A, 5145 A exciting lines of At laser and 6471 A exciting line of Kt laser	41
PBr4	Obs. OVFF UBFF	227(R) 228 234	72(R) 89 87	474(R) 474 471	140(R) 126 117	0,32 1.86	13.6	PBrs(solid) — Raman — 4358 A exciting line — Hg arc	11.

(R) Frequency obtained from Raman data. (IR) Frequency obtained from infrared data.

TABLE 5 Observed and colculated fundamental frequencies for main-family tetrahalides (cm⁻¹), IV. Jodides

			•						
Molecule		A ₁ (ν ₁)	E(\nu_1)	$F_2(v_3)$	$F_2(\nu_4)$	Average % deviation		Experimental details	Ref.
	;	:				1, 13	ν2, ν4		ļ
Mgia	Obs. OVFF UBFF	107(R) 107 107	42(R) 41 42	259(R) 259 259	60(R) 60 60	0.00	0.01	K ₂ Mgl ₄ (melt) Raman frequencies < 100 cm ⁻¹ 5682 A, 6471 A exciting lines; frequencies > 100 cm ⁻¹ 4880 A, 5145 A exciting lines	31
Alla	Obs. OVFF UBFF	146(R) 146 147	51(R) 58 54	336(R) 337 336	82(R) 69 80	0.15 0.35	14.8 4.0	All 3-Csl melt - 250°C Raman - 5145 A, 4880 A exciting lines	91
Gal,	Obs. OVFF UBFF	145(R) 145 145	52(R) 50 51	222(R) 222 222	73(R) 74 74	0.01	2.5 1.0	HGald aqueous soln. – Raman – 73 4358 A – Hg arc	. 73
Inia_	Obs. OVF? UBFF	139(R) 139 139	42(R) 42 42	185(R) 185 185	58(R) 58 58	0.00	0.00	Hīni4 aqueous soln. – Raman – 4358 A – Hg arc	73
Ç,	Obs. OVFF UBFF	178(R) 177 178	90(R) 87 90	555(R) 555 555	123(IR) 126 124	0.33 0.08	2.9 0.50	Solid Cl ₄ ; Raman: 6678 A exciting line; IR: Nujol mull	47,72
Sll4(solid)	Obs. OVFF UBFF	168(R) 168 169	63(R) 62 65	405(R) 405 405	94(R) 95 92	0.02	1.3	Solid — Raman — 4358 A — Hg arc	46
Sil4(gas)	Obs. OVFF UBFF	166(R) 166 167	58(R) 61 61	405(R) 405 405	90(R) 87 87	0.00	4, 4 £. £.	Vapor — Raman — 4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting lines of Kr laser	47

둉
į
3
٠,
BLE!

Molecula		A ₁ (v ₁)	$E(\nu_2)$	$F_2(\nu_3)$	$F_{2}(\nu_{4})$	Average % deviation		Experimental details	Ref.
						P1, P3	ν, ν4		
Gel4(soln.)	Obs. OVFF UBFF	159(R) 159 159	60(R) 57 60	264(R) 264 264	81(R) 83 81	0.03	4.3 0.23	GeL4 in cyclohexane soln. – Raman – 6471 A, 5682 A, 4880 A exciting lines	59, 74
Obs. 156(R Gela(gas) OVFF 156 UBFF 157	Obs. OVFF UBFF	156(R) 156 157	52(R) 54 56	273(R) 273 272	77(R.) 76 73	0.00	2.6 6.5	Vapor-Raman 4880 A, 5145 A exciting lines of At laser and 6471 A exciting lines of Kt laser	41
Snl4(soln.)	Obs. OVFF UBFF	151(R) 151 152	43(R) 44 46	221(R) 221 220	63(R) 63 60	0.01 0.52	1.3	Safe in cyclchexane soln. ~ Ruman ~ 6471 A, 5682 A, 5145 A, 4880 A exciting lines	65
Snľ ₄ (gas)	Obs. OVFF UBFF	148(R) 147 149	42(R) 46 45	210(R) 211 209	63(R) 60 60	0.58 0.58	7.1	Vapor – Raman – 4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting lines of Kr laser	47

(R) Frequency obtained from Raman data. (IR) Frequency obtained from infrared data.

Observed and calculated	t calculated	fundamental 1	frequencies fo	fundamental frequencies for transition-metal tetrahalides (cm 1). I. Chlorides	etal tetrohalid	les (cm ⁻¹). L	Chlorides		
Сотроина		A1(v1)	$E(\nu_1)$	$F_2(\nu_3)$	F2(v4)	Average % deviation		Experimental detalls	Ref.
					:	11, 13	¥2, ¥4		
TiCl4(sol.)	Obs. OVFF UBFP	388(R) 389 385	120(R) 106 112	498(R) 497 500	136(R) 144 142	0.24 0.50	8.7 5.7	Ticle in cyclohexane Raman – 6764 A, 5682 A, 4880 A laser excitation	59,75
TICI4(gas)	Obs. OVFF UBFF	389(R) 390 387	114(R) 112 109	49B(R) 498 499	136 137 140	0,13 0.36	3.7	Vapor – Raman – 4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	9/
Obs. TiCl4(solid) OVFF UBFF	Obs. OVFF UBFF	384(R) 387 381	123(R) 115 114	496(R) 494 498	136(R) 141 143	0.59 0.59	5.1 6.3	Solid – Raman at 80°K – 5145, 5280, 5682 A ex- citing lines	61
ZiCl4	Obs. OVFF UBFF	377(R) 379 376	98(R) 101 95	418(R) 419 418	113(R) 110 116	0,38 0.13	2.9	Vapor – 220°C – Raman – 4860 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	91
нст	Obs. OVFF UBFF	382(R) 380 382	102(R) 106 102	390(R) 392 390	112(R) 109 112	0.52	3.3	Vapor ~ Raman ~ 4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	92
VCI4	Obs. OVFF UBFF	385(R) 386 383	111(R) 109 104	483(R) 483 485	128(R) 129 134	0.13 0.46	1.3 5.5	VCl ₄ In CCl ₄ soln. – Raman – 6471 A, 5682 A, 5208 A excitations	11
MnCl4*	Obs. OVFF UBFF	255(R) 254 257	78(R) 85 84	284(IR) 285 283	117(JR) 112 110	0.28	6.5 6.5	[(C ₂ H ₅) ₄ N] ₂ MnCL ₄ (solid); Raman: Hc-Ne exciting line; IR: [(CH ₃) ₄ N] ₂ MnCl ₄ - Nujol mull	78

TABLE 6 (continued)

Compound		A1(v1)	$E(\nu_2)$	$F_2(\nu_3)$	$F_2(\nu_4)$	Average % deviation		Experimental details	Ref.
						64.19	P2, V4		
FeC14*	Obs. OVFF UBFF	266(R) 265 267	82(JR) 88 86	286(IR) 287 286	119(IR) 115 115	0.19	4.9	[(C ₂ H ₅) ₄ N] ₂ FeCl ₄ - Raman He-Ne exciting line	78
FeCl4	Obs. OVFF UBFF	330(R) 331 329	114(R) 107 109	378(R) 378 379	136(R) 140 140	0.19 0.29	4.9 3.6	[(C2H5)4N]2FeCl4(solid) — Raman — He—Ne laser	78
Cuci42	Obs. OVFF UBFF	297(R) 295 297	104(R) 111 105	252(R) 254 252	135(R) 131 134	0.75 0.03	4.6 0.53	Cs ₂ CuCl ₄ (single crystal) ~ Raman ~ 6328 A exciting line	79
ZnCl4*	Obs. OVFF UBFF	275(R) 275 275	79(R) 81 80	306(R) 306 306	104(R) 103 103	0.08 0.06	1.5 0.89	Aqueous solution – ZnCl ₂ + HCl Raman – Hg arc – 4358 A	78, 80
CdCl4*	Obs. OVFF UBFF	259(R) 260 259	91(R) 84 90	282(IR/R) 281 282	98(IR) 103 100	0.25 0.15	6.4	v ₁ , v ₂ : Raman of aqueous and TBP solutions respectively; v ₃ : Raman, IR of TBP solution – 5461, 4359 A lines; v ₄ : IR – Nujol mull	81
CdCL4?*	Obe OVFF UBFF	265(R) 266 264	104 d 103 95	250(R) 250 251	104(R) 105 111	0.39 0.39	0.96	(NEt4)2 CdCl4(solid) ~ Raman ~ 82 He-Ne gas laser	- 82
HgCl4*	Obs. OVFF UBFF	267(R) 266 269	180(R) 172 187	276(R) 276 274	192(R) 199 183	0.0 2 0.23	0.55 2.9	HgCl ₂ + KCl(melt) Raman 5461, 4358 A exciting lines	83

^d Broad absorption including ν_4 and ν_2 . (R) Frequency obtained from Raman data. (1R) Frequency obtained from infrared data.

Observed and calculated fundamental frequencies for transition-metal tetrahalides (cm⁻¹). II. Bromides TABLE 7

Compound		A1(v1)	$E(\nu_2)$	$F_2(\nu_3)$	$F_2(\nu_4)$	Average % deviation	***	Experimental details	Ref.
						64 14	73. 14		
	200	231(R)	74(R)	389(R)	90(R)			TiBra in cyclohexane	83
TIB14	OVFF	231	64	389	95	0.00	9.5	Raman - 5682 A, 5145 A,	
(soln.)	UBFF	230	69	390	93	0.33	5.0	4880 A, 6764 A, 6471 A exciting lines	
	Obs.	232(R)	69(R)	393(R)	88(R)			Vapor - Raman - 4880 A,	76
TB14 (gas)	OVFF	233	99	393	06	0.22	3.3	5145 A exciting lines of Ar	
) ·	UBFF	231	49	394	06	0.34	5.6	laser and 6471 A exciting line of Kr laser	
	Obs.	226(R)	60(R)	315(R)	72(R)			Vapor - Raman 4880 A.	92
ZrBr4	OVFF	227	5.8	315	73	0.22	2,4	5145 A exciting fines of Ar	
ı	UBFF	225	88	316	74	0.38	3.1	laser and 6471 A exciting line of Kr laser	
	0 p \$	236(R)	63(R)	273(R)	71(R)			Vapor – Raman – 4880 A.	92
HfBr4	OVFF	236	63	273	7.1	0.00	0.00	5145 A exciting lines of Ar	
	UBFF	235	9	274	73	0.39	3.8	laser and 6471 A exciting line of Kr laser	
	Obs.	195(R)	65(R)	226(R)	81(R)			[(C4H9)4N]2MnBr4 in CHCl3	8
MnBr4*	OVFF	196	61	226	63	0.26	3,9	solution - Raman - 5876 A	
	UBFF	124	55	226	22	0.76	10.2	He laser exciting line	
	Obs	172(R)	(R)	208(R)	88(R)			ZnBr2 + HBr - aqueous soln	78,80
ZnBr4	OVFF	172	63	208	90	0.00	3,5	Raman - He-Ne laser exciting	
	UBFF	171	63	208	8	0.29	3.5	line	
	Obs.	166(R)	53(R)	183(R)	62(R)			CdBr ₂ + KBr - aqueous soln	68, 86
CdBr4	OVFF	167	20	183	64	0.30	4.4	Raman - 4358 A, 5461 A -	
	CO E	176	٧٥	101	77	07.0	ç	House	

(R) Frequency obtained from Raman data.

TABLE 8

Observed and calculated fundamental frequencies for transition-metal tetrahalides (cm⁻¹). III. Jodides

0bs, Til4(soln.) 0VFF UBFF 0bs, Zil4 0VFF UBFF 0bs, Hft, 0VFF		i i	12(63)	1.5 (44)	deviation		Experimental details	Ref.
Obs. Til ₄ (soln.) OVFF UBFF Til ₄ (solid) OVFF Obs. Zrl ₄ OVFF UBFF Obs. Hfl ₄					ν, ν3	ν ₂ , ν ₄		
	162(R) 161 161	51(R) 49 49	323(R) 323 323	67(R) 68 69	0.30	3.5	Til4 in cyclohexane Raman - 6471 A, 5682 A, 5145 A, 4880 A exciting lines	65
	162(R) 162 161	51(R) 49 49	322(IR) 322 322	67(IR) 68 69	0.00	0.27	Solid; Raman: 6471, 6764 A exciting lines; IR: paraffin wax disc	76,87
	158(R) 159 158	43(R) 42 42	254(R) 254 254	55(R) 56 56	0.32	22.1	Vapor – Raman – 4880 A, 5145 A exciting lines of Artaser and 647 I A exciting line of Kr laser	92
	158(R) 159 158	55(R) 49 55	224(R) 223 224	63(R) 67 63	0.52	8.8 0.00	Vapor - Raman - 4880 A, 5145 A exciting lines of Ar laser and 6471 A exciting line of Kr laser	9/
Obs. Mal4 ^{2*} OVFF UBFF	116(R) 116 115	44(R) 39 40	190(IR) 190 190	56(R) 59 59	0.00	8. t. 4. 5.	1; [(C ₄ H ₉) ₄ N] ₂ MnI ₄ in CHCl ₃ - Raman - 5676 A; ν ₂ ; Raman - 6678 A; ν ₄ ; [(C ₄ H ₉) ₄ N] ₂ MnI ₄ (solid) - Raman - 6678 A; ν ₃ ; [(C ₂ H ₅) ₄ N] ₂ MnI ₄ - Nujol mull	8 8 4 - 14
Obs. Znl4 ² OVFF UBFF	122(R) 122 122	44(R) 43 42	170(R) 170 170	62(R) 63 64	0.00	1.9 3.9	Zni + I — aqueous sola. — Raman — 5460 A exciting line of Hg	78, 85
Ods. Cdd ^{2*} OVFF UBFF	117(R) 117 116	36(R) 33 32	145(R) 145 146	44(R) 45 47	0.00	5.3 9.0	CdI+17- aqueous soln Raman - 5460 A exciting line of Hg	98

(R) Frequency obtained from Raman data. (IR) Frequency obtained from infrared data.

TABLE 9

340 956 527 0.09 8.1 3.30 Na ₃ PO ₄ in NaOH soln. – IR; 428 1017 (IR) 567 (IR) 6.3 Raman: 4358 A Hg arc 420 (R) 1017 (IR) 567 (IR) 6.3 Raman: 4358 A Hg arc 420 (R) 1017 560 0.01 1.6 Raman: 4358 A Hg arc 448 1012 5.34 0.67 6.3 Raman: 4358 A Hg arc 450 1105 6.11 0.12 5.6 Raman: 4358 A Hg arc 450 1105 6.11 0.02 2.1 450 1105 6.11 0.02 2.1 450 1105 6.11 0.02 2.1 450 1105 6.11 0.02 2.1 450 1105 6.11 0.11 4.4 3.2 875 432 0.11 4.4 3.2 875 432 0.11 4.4 4.4 3.2 8.6 380 1.1 11.2 4.6 0.11 3.3 Raman – 4358 A Hg arc 459 (R) 1119 (R) 625 (R) 606 0.20 4.0 Raman – 4358 A Hg arc 506 1107 559 1.4 10.4 Raman – 4358 A Hg arc 624 357 0.17 3.4 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	Anion		$A_1(\nu_1)$	$E(\nu_2)$	$F_2(\nu_3)$	$F_2(\nu_4)$	Average % deviation	- 0	Experimental details	Ref.
340 956 527 373 956 493 0.09 8.1 386 946 461 1.5 13.00 420(R) 1017(IR) 567(IR) 0.01 1.6 Raman: 4358 A Hg arc 428 1017 560 0.01 1.6 Raman: 4358 A Hg arc 448 1017 534 0.67 6.3 Raman: 4358 A Hg arc 349 878 463 0.67 6.3 Raman: 4358 A Hg arc 370 869 402 1.2 12.3 460 1105 601 0.02 2.1 462 1105 601 0.02 2.1 463 366 0.89 7.6 460 10.1 4.4 470 11.1 4.4 370 866 380 1.1 370 866 380 1.1 4.4 370 86 380 1.1 11.2 459(R) 1119(R) 625(R) 0.17 3.4 476 1118 608 0.17 3.4 10.4 476 1118(R) 633(R) 1.4 10.4 10.4 489 1120							ν, ν3	73, 74		
386 946 461 1.5 13.00 420(R) 1017(IR) 567(IR) 1.6 Raman: 4358 A Hg arc 428 1017 560 0.01 1.6 Raman: 4358 A Hg arc 448 1012 534 0.67 6.3 Raman: 4358 A Hg arc 349 879 441 0.12 5.6 371 879 441 0.12 5.6 450 1105 611 0.02 2.1 462 1105 611 0.02 2.1 463 1105 611 0.02 2.1 464 1098 566 0.89 7.6 486 1098 566 0.89 7.6 486 1098 566 0.89 7.6 352 876 0.11 4.4 370 866 380 1.1 11.2 459(R) 1119(R) 625(R) 1.1 3.3 Raman - 4358 A Hg arc 476 1118 608 0.17 3.4 10.4 Raman - 4380 A Hg arc 506 1107 559 1.4 10.4 Raman - 4880 A. exciting line 606 0.20 4.0 Raman - 4880 A.	Sio,4	Obs. OVFF	819 820	340 373	956 956	527 493	0:09	## ##		88
Obs. 938(R) 420(R) 1017(IR) 567(IR) Na ₃ PO ₄ in Na ₂ OH soln IR; OVFF 938 428 1017 560 0.01 1.6 Raman: 4338 A Hg arc UBFF 946 448 1012 534 0.67 6.3 Raman: 4338 A Hg arc Obs. 837 349 878 462 1.2 1.2 5.6 Obs. 983 450 1105 601 0.02 2.1 0.2 Obs. 983 462 1105 601 0.02 2.1 0.2 Obs. 983 462 1105 601 0.02 2.1 0.2 Obs. 984 462 1098 566 0.89 7.6 0.89 7.6 Obs. 833 335 875 432 0.1 4.4 0.1 4.4 UBFF 843 370 866 380 1.1 11.2 0.1 0.1 0.1 0.1		UBFF	834	386	946	461	1.5	13.00		
448 1012 534 0.67 6.3 349 878 463 371 879 441 0.12 5.6 389 869 402 1.2 12.3 450 1105 611 462 1105 601 0.02 2.1 486 1098 566 0.89 7.6 315 875 432 320 876 416 0.11 4.4 370 866 380 1.1 11.2 298 624 357 459(R) 1119(R) 625(R) 462(R) 1118(R) 633(R) 463 1120 606 0.20 4.0 Ruman - 4880 A exciting line	F0,*	Obs. OVFF	938(R) 938	420(R) 428	1017(IR) 1017	S67(IR) 560	0.01	1.6	Na ₃ PO ₄ in NaOH soln. – IR; Raman: 4358 A Hg arc	88, 89
349 878 463 371 879 441 0.12 5.6 389 869 402 1.2 12.3 450 1105 601 0.02 2.1 462 1105 601 0.02 2.1 486 1098 566 0.89 7.6 335 875 432 7.6 370 866 380 1.1 4.4 370 866 380 1.1 11.2 459(R) 1119(R) 625(R) 1.1 11.2 459(R) 1119(R) 625(R) 0.11 3.3 Raman - 4358 A - Hg arc 462(R) 11107 559 1.4 10.4 1.004 Raman - 4860 A exciting line 462(R) 1118(R) 633(R) 1.2 4.0 Raman - 4860 A exciting line	•	UBFF	946	448	1012	534	0.67	6.3	•	
371 879 441 0.12 5.6 389 869 402 1.2 12.3 450 1105 611 0.02 2.1 462 1105 601 0.02 2.1 486 1098 566 0.89 7.6 352 876 416 0.11 4.4 370 866 380 1.1 11.2 298 ⁴ 624 357 0.17 3.4 309 625 346 0.17 3.4 459(R) 1119(R) 625(R) 6.25(R) 6.26 1.0.1 459(R) 1118(R) 633(R) 6.20 4.0 Raman - 4358 A - Hg atc 506 1107 559 1.4 10.4 666 0.20 4.0 Raman - 4880 A exciting line	Į,	Obs.	837	349	878	463	,	,		œ
450 1105 611 0.02 2.1 462 1105 601 0.02 2.1 486 1098 566 0.89 7.6 486 1098 566 0.89 7.6 486 1098 566 0.89 7.6 486 380 1.1 11.2 486 380 1.1 11.2 489 624 357 6.20 317 6.76 10.1 HClQ4(aqueous soln.) – 459(R) 1118(R) 653(R) 6.20 4.0 Raman – 4880 A exciting line 489 1120 606 0.20 4.0 Raman – 4880 A exciting line 489 1120 606 0.20 4.0 Raman – 4880 A exciting line	ArO4	OVFF	836	371	879	441	0.12	5.6		
450 1105 611 462 1105 601 0.02 2.1 486 1098 566 0.89 7.6 313 875 432 0.11 4.4 370 866 380 1.1 11.2 298 624 357 0.17 3.4 309 625 346 0.17 3.4 459(R) 1119(R) 625(R) 0.11 3.3 Raman 4358 A Hgatc 506 1107 559 1.4 10.4 462(R) 1118(R) 633(R) 1.5 10.1 462(R) 1118(R) 633(R) 1.5 10.1 606 0.20 4.0 Raman 4880 A exciting line		1100	0 1	10 5	8	2	4.1			
462 1105 601 0.02 2.1 486 1098 566 0.89 7.6 315 875 432 352 876 416 0.11 4.4 370 866 380 1.1 11.2 298 624 357 309 625 346 0.17 3.4 459(R) 1119(R) 625(R) 462(R) 1118(R) 633(R) 462(R) 1118(R) 633(R) 400 0.20 4.0 Raman - 4880 A exciting line	,	- - - - - - - - - - - - - - - - - - -	983	450	1105	611	8			88, 89
355 875 432 352 876 416 0.11 4.4 370 866 380 1.1 11.2 298 ⁴ 624 357 309 625 346 0.17 3.4 325 620 317 0.76 10.1 459(R) 1119(R) 625(R) 462(R) 1118(R) 633(R) 462(R) 1118(R) 633(R) 462(R) 1118(R) 633(R) 470 Raman - 4358 A - Hgatc 462(R) 1118(R) 633(R) 470 606 0.20 4.0 Raman - 4880 A exciting line	P02	747 1387	983 994	462 486	1098	998 366	0.89	7.6		
352 876 416 0.11 4.4 370 866 380 1.1 11.2 298 624 357 309 625 346 0.17 3.4 325 620 317 0.76 10.1 459(R) 1119(R) 625(R) 476 1118 608 0.11 3.3 Raman 4358 A Hg arc 506 1107 559 1.4 10.4 462(R) 1118(R) 633(R) 476 1120 606 0.20 4.0 Raman 4860 A exciting line		Obs.	. 833	335	875	432				88
370 866 380 1.1 11.2 298 624 357 309 625 346 0.17 3.4 325 620 317 0.76 10.1 459(R) 1119(R) 625(R) 462(R) 1118(R) 633(R) 400 0.20 4.0 Raman - 4880 A exciting line	ScO4 *	OVFF	832	352	876	416	0.11	4 ;		
298 d 624 357 309 625 346 0.17 3.4 325 620 317 0.76 10.1 459(R) 1119(R) 625(R) 0.11 3.3 Raman 4358 A Hgatc 506 1107 559 1.4 10.4 462(R) 1118(R) 633(R) LiNO ₃ -LiClO ₄ melt 350°C 489 1120 606 0.20 4.0 Raman 4880 A exciting line		GEF.	843	370	900	380	I.1	7.11		
309 625 346 0.17 3.4 325 620 317 0.76 10.1 459(R) 1119(R) 625(R) 0.11 3.3 Raman 4358 A Hg arc 506 1107 559 1.4 10.4 462(R) 1118(R) 633(R) 1.20 606 0.20 4.0 Raman 4860 A exciting line	1	Obs.	647	2984	624	357	•			88
459(R) 1119(R) 625(R) HCIO ₄ (aqueous soln.) – 476 1118 608 0.11 3.3 Raman – 4358 A – Hgarc 506 1107 559 1.4 10.4 HCIO ₄ (aqueous soln.) – 606 1104 LiNO ₃ – LiClO ₄ melt – 350°C – 606 0.20 4.0 Raman – 4880 A exciting line	TeO4.	OVEF	646 652	325 325	625 620	346 317	0.17	3.4 10.1		
476 1118 608 0.11 3.3 Raman 4358 A Hg arc 506 1107 559 1.4 10.4 LiNO ₃ LiClO ₄ melt 350°C 462(R) 1118(R) 633(R) 6.20 4.0 Raman 4880 A exciting line		Obs.	928(R)	459(R)	1119(R)	625(R)			HClO4 (aqueous soln.) -	88, 90
506 1107 559 1.4 10.4 462(R) 1118(R) 633(R) 1.20 4.0 Raman - 4880 A exciting line	CIO4 (soln.)	OVFF	930	476	1118	809	0.11	3,3	Raman 4358 A Hg arc	
462(R) 1118(R) 633(R) LiNO ₃ -LiClO ₄ melt 350°C 489 1120 606 0.20 4.0 Raman 4880 A exciting line		UBFF	945	206	1107	559	4.1	10,4	,	
OVFF 952 489 1120 606 0.20 4.0		Obs.	954(R)	462(R)	1118(R)	633(R)	;		LiNo ₃ -LiClO ₄ melt - 350°C-	
	CIO4 (melt)	OVFF THE	952	489 603	1120	909	0.70	9. č	Raman - 4880 A exerting line	

TABLE 9 (continued)

		A ₁ (ⁿ 1)	E(v ₂)	$F_{2}(v_{3})$	$F_2(\nu_3)$ $F_3(\nu_4)$	Average % deviation	.a	בע לכן היימוניתי ווכרום:	ZČ.
						71, 73	P3, P4		
	Obs.	798	331	883	410			3 M HBrOs paueous soin and	8
FO.	OVER	798	340	683	402	0.02	2.4	KBrOs (salid) - Raman -	
	UNFF	608	363	873	363	1.2	10.7	He-Ne source	
	Obs.	791	268	851	306			NaJOa (aguagous soln.)	63
104	OVER	791	270	852	305	0.05	0.53	•	1
	UBFF	799	290	843	275	0.98	9.2		

(R) Frequency obtained from Raman data. (IR) Frequency obtained from infrared data.

Observed and calculated frequencies for transition-metal oxyanions $\mathrm{MO_4}^H \, \mathrm{(cm^{-1})}$

Anion		A1(v1)	E(12)	$F_2(v_3)$	$\vec{F}_2(\nu_4)$	Average % devintion	ro.	Experimental details	Ref.
						P1, P3	V2, V4		
4,0Ti	Obs. OVFF UBFF	761(R) 757 763	306(R) ^d 318 316	770(IR) 773 768	371(IR) 362 360	0.45	3.1 3.1	Infrared of solid Ba ₂ TiO ₄ – Nujol mult; Raman of solid – Cary 81 with Ar-Kr haer (6471 A for red, brown, and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and	65
ZrO 4	Obs. OVFF UBFF	792(R) 791 800	332(R) 336 356	846(IR) ⁰ 847 834	387(IR) 384 354	0.12	1.0	Liq ZrO4 (solid) (detalls as for TiO4 , above)	33
Hf0.4	Obs. OVFF UBFF	796(R) 791 804	325(R) 340 354	800(IR) 804 793	379(IR) [#] 365 332	0.75	4.2	Li ₄ HfO ₄ (solid) (details as for TiO ₄ ⁴ , above)	33
V04*	Obs. OVFF UBFF	827(R) 834 824	340 b 307 314	780(R) 775 782	340(R) 360 363	0.75	7.7	K ₃ VO ₄ (aqueous soln.) Raman no reference to ex- citing line	22
4 0∨	Obs. OVFF UBFF	818(R) 812 818	319(R) 333 319	780(IR) ⁴ 784 780		0.00	3.1	Infrared of solid Ba ₂ VO ₄ — Nujol mull; Raman of solid — Cary 81 with Ar-Kr laser (6471 A for red, brown, and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and colorless solids)	83
CrO42 (aqueous	Obs. OVFF UBFF	847(R) 850 845	348(R) 317 339	884(R) 882 886	368(R) 387 376	0.30	7.1	K ₂ CrO ₄ (squeous soln.) Raman 5876 A exciting line He-No isser	22, 33, 94, 95

(continued)
_
Ф
_
BE

		•	•						
Anton		A1(P1)	$E(\nu_2)$	$F_2(\nu_3)$	$F_2(\nu_4)$	Average % deviation	ļ	Experimental details	Ref.
				!		84,14	V2, V4	,	
CrO4 ² *	Obs. OVFF UBFF	840(R) 843 839	348(R) 338 345	880(R) 878 881	378(R) 385 381	0.30 0.12	2.3	K ₂ CrO ₄ in molten LiF-NaF- KF- Raman – 6328 A – He-Ne laser	96
CrO4*	Obs OVFF UBFF	834(R) 825 837	260(R) 280 270	860(R) 867 858	324(R) 307 312	0.56 0.30	3.8	Infrared of solid Nujot mull; Raman of solid Cary 81 with Ar-Kr laser (6471 A for red, brown and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and color-	83
CO04	Obs. OVFF	806(R) 807 808	353(R) 349 361	855(IR) 854 863	404(R) 407 395	0.12	0.93	Ba ₂ CrO ₄ (details as for CrO ₄ , above)	33
MpO ₄ 3*	Obs. OVFF	897(R) 901 895	318 302 309	838 838	318(R) 329 328	0,40	1 4 K	Na2MoO4 (aqueous soln.) – Raman – 4358 A – Hg arc	33,98 ^c
MoO4	Obs. OVFF UBFF	792(R) 790 797	328(R) 333 347	808(IR) 809 804	373(IR) ^d 369 349	1.1 0.56	6.1	Infrared of solid Ba ₂ MoO ₄ — Nujol mull; Raman of solid — Cary 81 with Ar—Kr laser (6471 A for red, brown, and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and	33
¥04²	Obs. OVFF UBFF	931(R) 932 931	324 ^b 322 325	833(R) 832 833	324(R) 326 322	0.11	0.62 0.46	coloness solus) Not WO4(aqueous soln.) ~ . Raman ~ 4358 A ~ Hg arc	33, 98

33	22, 33, 95	22	22	100, 101	22, 33	66	33
Infrared of solid Ba ₂ WO ₄ – Nujol mult; Raman of solid – Cary 81 with Ar-Kr laser (6471 A for red, brown and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and colorless solids)	KMnO4 (aqueous soln.) Raman He-Ne laser ex- citing lines	K ₂ MnO ₄ (solid) – 1R – Nujol mull	Na3MnO4(solid) – IR – Nujol muli	NH4TcO4(aqueous soln.) ~ Raman — 4358 A — Hg are	KReO4 (aqueous soln.) Raman – 4358 A Hg arc	NaRcO ₄ (single crystal) – Raman – 77°K – 5145 A – At [†] laser	Infrared of solid – Nujol mull; Rarran of solid – Cary 81 with Ar-Kr laser (6471 A for red, brown, and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and color- less solids)
1,4 9.9	0.49 6.3	9.6 4.2	5.8 7.1	9.0	2.2	4,4 3,6	3.4
0.36	0.00	0.42	0.80 0.05	0.55 0.37	0.18	0.69	0.49
367(IR)	429(R)	328(IR)	348(IR)	325(R)	332(R)	374(R)	319(IR)
358	432	351	362	348	339	359	307
325	402	341	370	339	328	342	270
840(IR)	921(R)	862(IR)	770(IR)	912(R)	916(R)	92 5(R)	853(IR)
843	921	859	764	907	914	931	857
832	916	865	770	915	915	920	842
323(R)	355(R)	328 ^b	348 ^b	(347) ^d	332 ^b	334(R)	264(R)
332	351	288	322	310	324	350	276
350	377	314	321	333	325	356	293
621(R)	838(R)	810(IR)	863(IR)	912(R)	971(R)	952(R)	808(R)
818	838	814	870	917	973	945	804
829	B45	806	862	908	972	958	820
Obs.	Obs.	Obs.	Obs.	Obs.	Obs.	Obs.	Obs.
OVFF	OVFF	OVFF	OVFF	OVFF	OVFF	OVFF	Ovif
UBFF	UBFF	UBFF	UBFF	UBFF	UBFF	UBFF	Ubff
¥0,¥	Mn04	MnO ₄ 2	MnO ₄ 3	Tc04	RcO4 (aqueous soln.)	RcO ₄ * (solid)	ReO ₄

10 (continued)
TABLE

Anion		A1(P1)	$E(\nu_2)$	F2(v3)	F ₂ (v4)	Average % deviation		Experimental details	Ref.
						ν1, ν3	v2, v4		
FeO4	Obs. OVFF UBFF	912(R) 918 907	325 ^b 294 302	912(R) 908 916	325(R) 343 345	0.55 0.46	7.6	KFeO4(aqueous soln.) — Raman — 4358A — Hg arc	22
Fc042	Obs. OVFF UBFF	778(IR) 784 774	320 ^b 301 304	800(1R) 795 803	320(IR) 331 335	0.56 0.45	4.7 5.0	K_2 FeO ₄ (solid) – IR – Nujol mull	23
FeO ₄ ³	Obs. OVFF UBFF	776(R) 769 780	265(R) 283 281	805(IR) 810 802	335(IR) 319 315	0.75	5.8 6.0	Infrared of solid - Nujol mull; Raman of solid - Cary 81 with Ar-Kr laser (6471 A for red, brown and purple solids, 5648 A for chromate, 5145 A for blue and colorless solids)	33
FeO ₄ 4"	Obs. OVFF UBFF	762(R) 761 768	257(R) 261 274	857(IR) 858 852	314(IR) 310 293	0.12 0.68	1.4 5.9	Ba ₂ FeO ₄ (details as for FeO ₄ ³ , above)	33
Ru04	Obs. OVFF UBFF	826(IR) 830 826	282 ^b 273 281	848(IR) 845 848	282(IR) 288 284	0.36 0.00	2.6 0.53	KRuO4(solid) IR Nujol mull	22, 97
RuO4 ² * (K salt)	Obs OVFF UBFF	808(R) 311 807	323 b 301 320	790(R) 787 791	323(R) 338 326	0.38 0.08	5.8 0.98	K2 RuO4(solid) – Raman - He Ne laser 6328 A exciting line	91
RuO ₄ ²⁻ (aqueous soln.)	Obs. OVFF UBFF	· 810(R) 812 810	330 ^b 304 331	836(R) 834 836	330/R) 348 329	0.27	6.7	K ₂ RuO ₄ (aqueous soln.) — Raman — He—Ne laser — 6328 A exciting line	22, 97
RuO4 ^{2*} (Ba salt)	Obs. OVFF UBFF	811(R) 814 811	335(R) 305 335	840(R) 838 840	330(R) 350 331	0.30	14.5 0.15	BaRuO4(solid) — Raman — He- Ne laser — 6328 A exciting line	76

86	102	<u>8</u>	22, 24 , 97	102	33
Liquid Ho-Ne laser exciting line	Solid - Ne-He laser exciting line	Vapor – Raman – 5145 A, 6328 A exciting lines	Liquid — Raman — 4358 A — Hg arc; also 4046 A, 5461 A used	Solid Raman 4358 A, 5461 A, 5790 A exciting lines Cary 81	Infrared of solid Ba ₂ CoO ₄ — Nujol mull; Ramen of solid — Cary 81 with At-Kr laser (6471 A for red, brown and purple solids, 5648 A for chromate, 5145 A for green solids, 4880 A for blue and colorless solids)
7.5 0.45	7.4 0.00	2.1 0.12	3.9	5.4 0.75	617
0.33	0.28	0.31	0.22	0.31 0.11	0.25
332(R)	328(R)	323(R)	335(R)	327(R)	340(fR)
352	348	329	346	342	342
334	328	319	326	324	330
918(R)	921(R)	960(R)	954(R)	951(R)	855(R)
915	919	951	951	948	854
918	921	959	951	950	853
338(R)	332(R)	333(R)	338(R)	340(R)	300(R) ⁴
308	303	32 5	323	319	297
337	332	337	344	342	308
883(R)	878(R)	965(R)	965(R)	961(R)	790(R.)
886	881	968	966	964	791
883	878	966	966	962	793
Obs.	Obs.	Obs.	Obs.	Obs.	Obs.
OVFF	OVFF	OVFF	OVFF	OVFF	OVTF
UBFF	UBFF	UBFF	UBFF	UBFF	UBFF
RuO4(liq.)	RuO4(solid)	Obs. OsO4(gas) OVFF UBFF	0sO4(liq.)	OsO ₄ (solid)	\$\$\doldred{\psi}\$

Average of two bands.
 Broad absorption including \(\rapprox\) and \(\rapprox\).
 Recent assignments based on the isotopic shift technique have appeared recently for the MoO₄²⁻ ion (see ref. 112).
 Estimated.

⁽R) Frequency obtained from Raman data. (IR) Frequency obtained from infrated data.

Observed and calculated fundamental frequencies for transition-metal anions $\mathrm{MS_4}^{\pi}$ (cm $^{-1}$) TADLE 11

Compound		A1(v1)	$E(\nu_1)$	$F_2(\nu_3)$	$F_2(u_4)$	Average % deviation		Experimental details	Ref.
						£4'14	7, 74		
vS ₄ 3-	Obs. OVF? UBFF	404(IR) 405 399	200 ⁴ 163 179	470(IR) 470 473	200(IR) 218 215	0.13	13.6	(NH4)3VS4 - IR Nujol mull	104, 106
NbS ₄ 3*	Obs. OVEF UBFF	408(R) 411 405	163 ⁴ 154 151	421(1R) 419 423	163(IR/R) ^b 168 173	0.61 0.61	4. 9 8. 8	Tl ₃ NbS ₄ – 1R Nujol mull; Raman – He–Ne exciting line	105
TaS4³F	Obs. OVFF UBFF	424(R) 425 423	1704 169 166	399(IR/R) ^b 399 400	170(IR/R) ^b 171 174	0.12 0.24	0.58	Ti ₃ TaS ₄ – IR – Nujol mull; Raman – He–Ne lašer exciting line	105
MoS42	Obs. OVFF UBFF	460(IR) 464 4 <i>S7</i>	195 ⁴ 181 183	480(1R) 477 482	195(1R) 203 206	0.75 0.53	3.6 5.8	Cs ₂ MoS4 — IR — Nujol mull	104–106°
₩S ₄ ²*	Obs. OVEF UBFF	485(R) 486 484	185 ⁴ 183 181	465(R) 464 466	185(R) 186 190	0.21 0.21	0.81 2.5	Cs ₂ WS ₄ – Raman – laser excitation line not specified	104106
ReS4	Obs. OVFF UBFF	501(R) 503 500	200 ⁴ 196 197	486(IR) ^d 485 487	200(IR) 203 204	0.30	1.8	(C ₆ H ₅) ₄ PReS ₄ – Raman – exciting line not mentioned; (C ₆ H ₅) ₄ PReS ₄ and (CH ₃) ₄ NReS ₄ – IR – Nujol mull	105

a Broad absorption including v₄ and v₂.
 b Average of Raman and IR measurements.
 c Recent assignments based on the isotopic shift technique have appeared recently for the MoS₄^T ion (see Ref. 66).
 d Average of IR runs.

TABLE 12 Observed and calculated fundamental frequencies for transition-metal anions ${\sf MSc_n}^{\cal H}({\sf cm}^{-1})$

Сотроина		A ₁ (p ₁)	$E(\nu_2)$	$F_2(\nu_3)$	$F_2(\nu_4)$	Average % deviation		. Experimental details	Ref.
						P4: P3	P2, P4		
VSe4 3-	Obs. OVFF UBFF	232 a 234 237	121 b 98 104	365(IR) 364 367	121(JR) 132 133	0.56	14.1 11.5	Tl ₃ VSe ₄ - Nujof mull	105
NbSe4	Obs. OVFF UBFF	239(R) 242 236	100 b 85 87	316(IR) 314 318	100(1R/R) ^C 107 109	0,38	11.0	Tl3NbSe4 - Nujol mull; Raman - He-Ne laser ex- citing line	105
TaSe4	Obs. OVFF UBFF	249(R) 252 247	103 ° 93 95	277(IR/R) ^C 275 279	103(IR/R) ^C 108 110	0.96	7.3 7.3	Tl3TaSe4 — Nujol mull; Raman — 105 He-Ne laser exciting line	- 105
MoSe ₄ ²⁻	Obs. OVFF UBFF	255(R) 258 251	120 6 100 107	340(IR) 338 342	120(IR) 130 129	0.88 1.1	12.5 9.2	(NH4)2MoSe4 — Nujol mull; Raman — He—Ne laser exciting tine	105
WSc4	Obs. OVFF UBFF	281(R) 284 279	107 b 99 97	309(R) 307 311	107(R) 112 115	0.86	6.1 8.4	Cs2 WSe4 Raman HeNe laser exciting line	105

 $\frac{a}{b}$ Estimated. $\frac{b}{b}$ Broad absorption including ν_4 and ν_2 . ϵ Average of Raman and IR measurements.

Observed and calculated frequencies for several miscellaneous tetrahedral molecules (cm^{-1}) TABLE 13

Molecule		A1(v1)	$E(\nu_1)$	$F_2(\nu_3)$	$F_2(u_4)$	Average % deviation		Experimental details	Ref.
						ν, ν3	V2, V4	;	
B(OH)4	Obs. OVFF UBFF	754(R) 755 758	379(R) 396 337	947(R) 948 946	533(R) 516 522	0.12	3.8	Aqueous soln. — Raman — no exciting line reported	107
Al(OH)4	Obs. OVPF UBFF	615(R) 616 607	310 ⁴ 252 279	720 ⁶ 720 725	310(R) 338 333	0.08	13.9	Aqueous soln. – Raman 4358 A – Hg arc	108
Zn(OH)4	Obs. OVFF UDFF	470(R) 471 467	300 d 304 269	570(R) 569 571	300(R) 296 322	0.22	1.3 7.8	Aqueous soln. – Raman – 4358 A – Hg arc	108
XeO4(sotid)	Obs. OVFF UBFF	767(R) 767 717	277(R) 271 300	867(R) 867 858	303(R) 309 270	0.02	2.1 9.3	XcO4 (solid) - Raman - 6328 A. 5145 A exciting lines	107
Xe O ₄ (gas)	Obs. OVFF UBFF	776(R) 777 788	267 ^b 262 294	879(IR) 878 867	306(IR) 310 265	0.12 1.5	0.17	Raman – 5145 A exciting line of Ar laser; IR of vapor	110
UF.	Obs. OVEF UBFF	614(R) 608 608	340(R) 336 338	420(IR) 431 430	180(1R) [79 180	1.8	0.85 0.51	UF4(solid) Csl pellet IR; Raman 6328 A exciting line	109
AsS4³	Obs. OVFF UBFF	386(R) 386 388	171(R) 169 179	419(R) 419 417	216(R) 217 206	0.01 0.49	0.29 4.6	Raman - solution - no details on exclting line	90, 106
SbS ₄ 3	Obs. OVFF UBF?	366(R) 366 367	156(R) 151 161	380(R) 380 379	178(R) 182 173	0.09	2.9 3.1	Raman – solution – no details on exciting line	90, 106

 $^{\rm d}$ Broad absorption including $\nu_{\rm d}$ and $\nu_{\rm 2}$. $^{\rm b}$ Calculated.

is preferred. In five cases the two fields are either equal or one gives a better fit with the ν_1 , ν_3 vibrations while the other is better for the ν_2 , ν_4 vibration.

(e) Transition-metal thio- and seleno-anions (MS₄ⁿ, MSe₄ⁿ)

Tables 11 and 12 list the computer results for the OVFF and UBFF for six thio-anions (MS₄ⁿ) and five seleno-anions (MSe₄ⁿ). In three out of six cases for the thio-anions the OVFF is slightly preferred, while in the five cases involving the seleno-anions the fields are essentially equivalent.

(f) Miscellaneous tetrahedral molecules

Table 13 compiles the data for several other tetrahedral molecules.

(g) Summary

A number of difficulties in making a choice of force fields for tetrahedral molecules exist. Several approximations had to be made for both the UBFF and the OVFF to ensure that the number of force constants would be less than the frequencies observed. No anharmonicity corrections were made, and a good deal of the spectroscopic data were obtained for solids, where local perturbations become more important. Added to this is the complication that certain structures distorted from T_d are possible. Recent publications indicate that in the A_2 MCI₄ series (A = Cs and M = Fe, Co, Cu and Zn), distorted MCI₄ tetrahedra are known to exist. The extent of distortion varies, but is greatest for the copper complex. Similarly, doubt has been raised concerning the tetrahedral species MgX₄²⁻ in the melt ²⁰. Recent molecular dynamics calculations have indicated that the predominant structure is trigonal MgCl₃⁻.

It is to be noted that except for the main-family oxyanions, only small differences existed between the results obtained from the OVFF and UBFF for tetrahedral molecules. For the main-family oxy-anions the OVFF is definitely superior to the UBFF. Heath and Linnett ²¹ made similar observations for these anions when they compared the OVFF with a simple valence force field.

Several force fields have previously been applied to some transition-metal oxyanions. These include the GVFF, UBFF, OVFF and a modified valence force field (MVFF)^{1,22-26}. Since most of the results obtained for these anions relate to solids, there is some serious question as to the possibility of finding a force field that can adequately explain the forces involved. Krebs and Müller ²⁶ have indicated that the interactions between non-bonded atoms cannot be explained by van der Waals forces alone, and that Coulombic forces must be taken into account. In this work, the UBFF does appear to demonstrate some advantage over the OVFF, except for the highly charged (-4) anions, where the OVFF seems to be preferred in six out of nine cases.

A comparison of force fields may prove to be helpful for assignment purposes. The case of $TlCl_4^-$ may be cited. In the original assignments³² the 78 cm⁻¹ absorption was assigned as ν_2 and the lowest absorption at 60 cm⁻¹ was assigned as ν_4 . When the computations are

made based on these assignments, the UBFF gives extremely poor fits, and only the OVFF gives a reasonable fit. If one reverses the assignments, excellent results are obtained from both force fields. It appears then that ν_4 should be assigned at 78 cm⁻¹ and ν_2 at 60 cm⁻¹. This is reasonable since for most main-family tetrahalides of T_d symmetry reported in this paper, the value of ν_4 is greater than ν_2 , in agreement with conclusions reached by others ^{26,30,33}.

(ii) Discussion of force constants

Various correlations between vibrational frequencies and the properties of molecules have been made $^{26-30}$. It would be of more significance to use fundamental quantities such as force constants rather than vibrational frequencies in making such correlations. In this paper we make such correlations of the primary stretching force constant with the oxidation of the central atom and with the atomic number of M and X in MX_4^n -type molecules. This approach can be justified on two counts — no orderly trends are observed for the frequencies of many of these molecules and the primary stretching force constants as calculated from three different force fields (K in the OVFF and UBFF and f_r in the GVFF), appear to give similar trends for all fields. The smaller magnitude of the other force constants (H and F in the OVFF, D and F in the UBFF and f_m , f_{α} and $f_{\alpha\alpha}$ in the GVFF) prevents one from making any additional meaningful comparisons.

The difficulties which present themselves in the case of tetrahedral molecules have been discussed in a previous section. Additional problems may be cited. For example, in some cases ν_2 is assumed to be equal to ν_4 , since a broad absorption is found experimentally and both absorptions are considered to be coincidental. Alternatively, one of these absorptions may be so weak in intensity that it cannot be observed. Coupling of the low-frequency modes with lattice vibrations is an added complication in the solid state ³¹. These difficulties contribute to the uncertainty of the force constants for T_d molecules. However, the values obtained for the primary stretching force constant appear to be reasonable in most cases, and, where comparisons are possible, agree with results obtained by other workers. Certainly the force constants would have more significance if corollary data, such as isotope shifts, Coriolis coupling constants and centrifugal distortions, could be used. In most cases, such additional data are either not available or in the case of solids and liquids impossible to obtain.

(a) Trends

The relationship between the primary stretching force constant with the physical properties in MX_4^n -type molecules has been previously cited ³⁴⁻³⁷. However, most of the previous comparisons have been based on a limited number of data. Some of these relationships have now been substantiated using the large body of results reported in this paper. In addition, some new trends are suggested.

1. Oxidation state. The primary stretching force constants involving the MX stretch (K in the OVFF and UBFF, and f_r in the GVFF) are observed to be sensitive to the oxidation

TABLE 14

Force constants for main-family tetrahalides. I. Fluorides.
All force constants in this paper are in the units mdyne/A. An asterisk after the formula of a compound in the tables means that there is one or more additional entry for that compound.

Force field	IIA	ША	ΓVA	IVB
	BeF ₄ ²⁻	BF4 (solid)	CF ₄	
OVFF UBFF GVFF	1.42, 0.31, 0.48 1.40, 0.08, 0.50 Diverges	2.39, 0.27, 1.06 2.46, 0.10, 1.06 Diverges	4.39, 0.84, 1.27 4.59, 0.33, 1.21 Diverges	
			SiF ₄	
OVFF UBFF GVFF			5.86, 0.50, 0.33 5.83, 0.17, 0.38 7.11, 2.39, 0.46, 0.10	
•			GeF4	TiF4(gas)
OVFF UBFF GVFF			5.11, 0.24, 0.24 5.03, 0.07, 0.29 5.45, 0.22, 0.25, 0.05	4.44, 0.07, 0.30 4.44, 0.01, 0.30 4.81, 0.29, 0.15, 0.01
		BF ₄ (melt)		
OVFF UBFF GVFF		2.98, 0.62, 0.94 2.95, 0.16, 0.98 Diverges		

TABLE 14 (continued). II. Chlorides

Force field	IIA	IIIA	ĮVA	VA
		BCI ₄	CCla*(liq.)	. "
OVFF		1.32, 0.24, 1.63	1.79, 0.27, 0.65	
UBFF		1.26, 0.05, 0.54	1.87, 0.11, 0.64	
GVFF		Diverges	Diverges	
	MgCl ₄ ²⁻	AICI4	SiCl ₄ *(liq.)	PCl ₄ ⁺
OVFF	0.68, 0.06, 0.16	1.64, 0.08, 0.23	2.71, 0.20, 0.26	3.19, 0.31, 0.30
UBFF	0.67, 0.01, 0.16	1,65, 0.03, 0.24	2.72, 0.08, 0.27	3.22, 0.12, 0.31
GVFF	Diverges	1.70, 0.29, 0.20, 0.05	2.81, 0.31, 0.27, 0.06	3.29, 0.36, 0.36, 0.08
		GaCl ₄	GeCl4*(liq.)	AsCla*
OVFF		1.73, 0.06, 0.19	2.43, 0.14, 0.21	3.01, 0.26, 0.18
UBFF		1.72, 0.02, 0.20	2.43, 0.05, 0.22	3.02, 0.11, 0.18
GVFF		1.94, 0.19, 0.14, 0.12	2.63, 0.22, 0.09, -0.02	3.22, 0.17, 0.22, 0.02

TABLE 14 (continued) II. Chlorides

Force field	ΗA	IHA	ĮVA	VA
		InCl ₄	SnCla*(liq.)	SbCl ₄ ⁺
OVFF UBFF GVFF		1.54, 0.02, 0.14 1.57, 0.00, 0.15 1.77, 0.13, 0.08, 0.02	2.33, 0.12, 0.11 2.30, 0.04, 0.14 2.48, 0.10, 0.12, 0.02	2.29, 0.27, 0.08 2.30, 0.12, 0.08 2.40, 0.07, 0.16, 0.01
		TlCl ₄	PbCl4*(liq.)	
OVFF UBFF GVFF		1.39, -0.07, 0.15 1.33, -0.04, 0.18 1.62, 0.14, 0.05, 0.11	1.99, 0.07, 0.06 2.01, 0.04, 0.05 2.09, 0.05, 0.06, 0.003	1
			CCl ₄ *(solid)	
OVFF UBFF GVFF			1.97, 0.42, 0.60 1.95, 0.12, 0.61 Diverges	
			CCl4*(gas)	
OVFF UBFF GVFF			2.02, 0.39, 0.60 2.00, 0.11, 0.62 Diverges	
			SiCl4*(gas)	
OVFF UBFF			2.71, 0.24, 0.25 2.69, 0.07, 0.28	
GVFF			2.70, 0.32, 0.24, 0.06	
Orme			SiCl4*(solid)	
OVFF UBFF			2.64, 0.26, 0.25 2.64, 0.08, 0.27	
GVFF			2.72, 0.32, 0.27, 0.06	
			GeCl4*(gas)	
OVFF			2.55, 0.18, 0.17	
UBFF GVFF			2.49, 0.05, 0.21 2.72, 0.19, 0.18, 0.04	
			GeCl4*(solid)	
OVFF			2.50, 0.21, 0.17	
UBFF			2.48, 0.06, 0.19	
GVFF			2.68, 0.17, 0.18, 0.03	
			SnCl4 (gas)	
OVFF			2.45, 0.13, 0.84	
UBFF			2.36, -0.02, 0.13	
GVFF			2.55, 0.10, 0.11, 0.02	

TABLE 14 (continued) II. Chlorides

Force field []	[A	ША	IVA	VA
			SnCl ₄ *(solid)	
OVFF			2.37, 0.15, 0.0	9
UBFF			2.34, 0.05, 0.1	1
GVFF			2.50, 0.09, 0.1	1, 0.02
			PbCl4*(solid)	
OVFF			2.01, 0.16, 0.0	4
UBFF			1.91, 0.04, 0.0	
GVFF			2.06, 0.05, 0.1	

TABLE 14 (continued) III. Bromides

Force field	IIA	ша	IVA	VA
		BBr4	CBr ₄	
OVFF UBFF GVFF		1.04, 0.14, 0.43 1.09, 0.06, 0.42 Diverges	1.49, 0.20, 0.47 1.57, 0.08, 0.46 Diverges	
	MgBr ₄ ² -	AlBr ₄	SiBr4 (liq.)	PBr4*
OVFF UBFF GVFF	0.62, 0.07, 0.11 0.62, 0.02, 0.11 Diverges	1.36, 0.06, 0.20 1.37, 0.02, 0.20 1.25, 0.30, 0.21, 0.06	2.02, 0.14, 0.22 2.05, 0.06, 0.23 1.96, 0.32, 0.24, 0.06	2.04, 0.22, 0.10 2.10, 0.08, 0.12 1.86, 0.19, 0.36, 0.09
		GaBr ₄ ~	GeBr4*(liq.)	
OVFF UBFF GVFF		1.32, 0.03, 0.19 1.33, 0.01, 0.19 1.43, 0.22, 0.13, 0.03	1.88, 0.10, 0.18 1.89, 0.04, 0.18 1.99, 0.20, 0.15, 0.03	
		InBr ₄	SnBr4*(liq.)	
OVFF UBFF GVFF		1.33, 0.02, 0.12 1.32, 0.01, 0.13 1.44, 0.13, 0.08, 0.02	1.84, 0.08, 0.11 1.83, 0.03, 0.12 1.94, 0.11, 0.10, 0.02	
		TlBr4		
OVFF UBFF GVFF		1.29, 0.01, 0.10 1.28, 0.003, 0.11 1.42, 0.01, 0.06, 0.01		

TABLE 14 (continued) III. Bromides

Force			
field IIA	IIIA	IVA	VA
•	 	SiBra*(gas)	
OVFF		2.11, 0.20, 0.	18
UBFF		2.13, 0.06, 0.	18
GVFF		2.05, 0.27, 0.	22, 0.05
		GeBr4* (gas)	
OVFF		1.97, 0.14, 0.	1.5
UBFF		1.96, 0.03, 0.	18
GVFF		2.05, 0.19, 0.	15, 0.03
		SnBr4(gas)	
OVFF		1.94, 0.10, 0.	08
UBFF		1.90, 0.02, 0.	li
GVFF		2.01, 0.10, 0.0	09, 0.02

TABLE 14 (continued) IV. Iodides

Force field	IIA	IIIA	IVA	VA
			CI ₄	
OVFF UBFF GVFF			0.94, 0.18, 0.35 1.01, 0.08, 0.34 Diverges	
	Mgf42-	AU4	Sil4 (solid)	
OVFF UBFF GVFF	0.54, 0.05, 0.08 0.54, 0.01, 0.08 Diverges	1.08, 0.17, 0.08 1.02, 0.02, 0.15 Diverges	1.48, 0.11, 0.16 1.50, 0.05, 0.16 1.40, 0.24, 0.18, 0.04	
		Gal ₄	Gel4*(soln.)	
OVFF UBFF GVFF		0.98, 0.02, 0.15 0.98, 0.01, 0.15 1.01, 0.19, 0.11, 0.02	1.39, 0.10, 0.12 1.41, 0.05, 0.12 1.92, 0.63, 0.12, 0.02	
		Inla.	SnI4*(soin.)	
OVFF UBFF GVFF		0.98, 0.00, 0.12 0.98, 0.00, 0.12 1.06, 0.13, 0.06, 0.01	1.42, 0.07, 0.07 1.42, 0.02, 0.08 1.47, 0.08, 0.07, 0.01	

TABLE 14 (continued) IV. Iodides

Force field	ПА	IIIA	IVA .	VA	
			Sil ₄ (gus)		
OVFF			1.52, 0.13, 0.13	3	
UBFF			1.53, 0.04, 0.14	4	
GVFF			1.46, 0.20, 0.10	6, 0.04	
			GeI4*(gas)		
OVFF			1.52, 0.14, 0.0	7	
UBFF			1.53, 0.05, 0.03	8	
GVFF			1.54, 0.09, 0.1	1, 0.02	
			SnI4 (gas)		
OVFF			1.30, 0.07, 0.0	8	
UBFF			1.28, 0.02, 0.09	9	
GVFF			1.34, 0.10, 0.0	7, 0.02	

Key to Table 14 and subsequent tables (compounds MX_4^n)

Force field	Force constants	 	
OVFF UBFF	K, H, F K, D, F		
GVFF	fr frr fat fax		

state (or ionic charge) of the central metal atom in the various tetrahedral molecules and anions studied in this paper. Tables 14—19 list the force constants obtained from the three force fields used. For the main-family tetrahalides the primary stretching force constant is observed to increase as the oxidation state increases (Table 14). For example

Although not nearly as many examples are available for the transition-group tetrahalides, the same trend prevails (e.g. the primary stretching force constant for TiCl₄ \simeq VCl₄ >

TABLE 15
Force constants for transition-metal tetrahalides. I. Chlorides (mdyne/A)

Force field	IVB	VB	VIB	VIIB	
	TiCla*(soin_)	VCla		MnCl ₄ 2	
OVFF	2.50, 0.08, 0.17	2.32, 0.01, 0.19		0.84, 0.01, 0.13	
UBFF	2.31, 0.03, 0.15	2.37, 0.03, 0.15		0.83, -0.002, 0.14	
GVFF	2.67, 0.17, 0.11, 0.05	2.52, 0.18, 0.09,	-0.01	0.95, 0.14, 0.08, 0.0	
	ZrCl4				
OVFF	2.32, 0.04, 0.15				
UBFF	2.31, 0.004, 0.16				
GVFF	2.05, 0.15, 0.08, 0.007	,			
	HfCl ₄				
OVFF	2.41, 0.07, 0.15				
UBFF	2.37, 0.01, 0.17				
GVFF	2.63, 0.14, 0.09, 0.01				
	TiCl4 *(gas)				
OVFF	2.50, 0.08, 0.17				
UBFF	2.51, 0.03, 0.15				
GVFF	2.67, 0.17, 0.10, 0.005	i			
	TiCl4 (solid)				
OVFF	2.46, 0.09, 0.16				
UBFF	2.49, 0.04, 0.13				
GVFF	2.63, 0.15, 0.10, -0.00	2			

TABLE 15 (continued) II. Bromides

Force field	IVB	VB	VIB	VIIB
	TiBr ₄ *(soln.)			MnBr ₄ ²⁻
OVFF	2.08, 0.07, 0.11			0.78, -0.11, 0.26
UBFF	2.09, 0.04, 0.10			0.77, -0.04, 0.25
GVFF	2.15, 0.12, 0.09,	0.001		0.93, 0.29, 0.09, 0.01
	ZrBr4			
QVFF	2.08, 0.06, 0.09			
UBFF	2.10, 0.03, 0.07			
GVFF	2.16, 0.08, 0.06,	0.003		
	_			•

Vii		B	ITB
FeCl4 ²⁻	FeCl ₄	CuCl ₄ 2-	ZnCl4 ²⁻
0.85, -0.01, 0.15 0.84, -0.01, 0.16 1.00, 0.16, 0.09, 0.02	1.50, 0.02, 0.20 1.51, 0.01, 0.19 1.70, 0.19, 0.11, 0.01	0.61, -0.08, 0.30 0.59, -0.04, 0.31 0.92, 0.31, 0.13, 0.03	1.07, -0.01, 0.13 1.06, -0.01, 0.13 1.21, 0.12, 0.06, 0.01
			CdCl42-*(soin.)
			1.10, 0.06, 0.08 1.11, 0.03, 0.07 1.21, 0.06, 0.06, 0.00
			HgCl ₄ ²⁻
			1.17, 0.53, 0.08 1.16, 0.21, 0.09 1.27, 0.07, 0.15, -0.04
			CdCl4 ^{2-*} (solid)
			0.80, 0.03, 0.17 0.81, 0.03, 0.16 1.03, 0.14, 0.07, 0.00
VII		IB	IIB
			ZnBr4 ²⁻
			0.69, -0.01, 0.18 0.69, 0.00, 0.17 0.74, 0.22, 0.12, 0.03
			CdBr42-
			0.75, -0.04, 0.14 0.75, -0.01, 0.13 0.89, 0.14, 0.05, 0.00

TABLE 15 (continued) II. Bromides

Force field	IVB	VB	VIB	VIВ
	HfBr ₄			
OVFF	2.12, 0.05, 0.1	3		
UBFF	2.13, 0.01, 0.1			
GVFF	2.27, 0.12, 0.0	7, 0.004		
	TiBr4 (gas)			
OVFF	2.14, 0.09, 0.1	0		
UBFF	2.15, 0.04, 0.0	9		
GVFF	2.22, 0.11, 0.0	8, 0.04		

TABLE 15 (continued). III. Iodides

Force field	ГVВ	VB	VIB	ију
	TU4 (soln.)		 	MnI ₄ ²⁻
OVFF	1.61, 0.08, 0.0	9		0.60, 0.00, 0.10
UBFF	1,60, 0.03, 0.0	18		0.60, 0.00, 0.10
GVFF	1.64, 0.11, 0.0			0.63, 0.13, 0.06, 0.007
	ZrI4			
OVFF	1.62, 0.06, 0.0	6		
UBFF	1.63, 0.02, 0.0			
GVFF	1.66, 0.07, 0.0			
	HfT4			
OVFF	1.82, 0.16, 0.0	02		
UBFF	1.84, 0.07, 0.0			
GVFF	1.85, 0.005, 0.			
	Tila *(soln.)			
OVFF	1.60, 0.07, 0.0	9		
UBFF	1.60, 0.03, 0.0			
GVFF	1.63, 0.11, 0.0			

liB ZnI ₄ ²⁻
ZnI,2-
0.55, -0.02, 0.14 0.55, -0.01, 0.14 0.63, 0.16, 0.06, 0.00
CdI42-
0.60, -0.04, 0.11 0.60, -0.01, 0.10 0.68, 0.11, 0.04, 0.003

TABLE 16
Force constants for main-family oxygenated tetrahedral anions (mdyne/A)

Force field	ΓVA	VA	VIA	VIIA
	SiO4 ⁴⁻	PO43-	SO ₄ ²⁻	ClO4 (soln.)
OVFF	4.30, 0.75, 0.51	5.03, 0.83, 0.82	6.06, 1.17, 0.76	6.51, 1.70, 0.41
UBFF	4.29, 0.26, 0.57	5.03, 0.32, 0.85	6.06, 0.44, 0.81	6.52, 0.63, 0.47
GVFF	4.41, 0.64, 0.91, 0.27	5.56, 0.91, 1.04, 0.24	6.56, 0.85, 1.18, 0.27	6.73, 0.46, 1.24, 0.29
		AsO43-	SeO42	BrO 4
OVFF		5.33, 0.96, 0.32	5.39, 0.86, 0.28	5.63, 0.99, 0.09
UBFF		5.16, 0.32, 0.41	5.23, 0.29, 0.37	5.47, 0.35, 0.17
GVFF		5.74, 0.29, 0.73, 0.17	5.78, 0.25, 0.63, 0.14	5.75, 0.08, 0.57, 0.11
			TeO ₄ 2-	104
OVFF			2.90, 0.62, 0.26	5.80, 0.67, 0.02
UBFF			2.81, 0.22, 0.30	5.63, 0.23, 0.10
GVFF			3.30, 0.22, 0.48, 0.10	5.83, 0.02, 0.34, 0.06
				ClO ₄ *(melt)
OVFF				6.56, 1.72, 0.50
UBFF				6.49, 0.59, 0.59
GVFF				6,78, 0.60, 1.28, 0.31

MnCl₄²⁻; FeCl₄²⁻ < FeCl₄²; TiBr₄ > MnBr₄²⁻; TiL₄ > Mnl₄²⁻) as seen from Table 15. Similar trends are noted for the main-family oxyanions (Table 16), and the transition metal oxythio- and seleno-anions (Tables 17, 18) (for example, the primary stretching force constant for SiO₄⁴⁻ < PO₄³⁻ < SO₄²⁻ < ClO₄⁻; AsO₄³⁻ < SeO₄²⁻ < BrO₄⁻; TeO₄²⁻ < IO₄⁻; ReO₄³⁻ < ReO₄⁻; MnO₄³⁻ < MnO₄²⁻; VO₄³⁻ < CrO₄²⁻ < MnO₄⁻; MoO₄²⁻ < TcO₄⁻ < RuO₄; WO₄²⁻ < ReO₄⁻ < OsO₄; MoO₄⁴⁻ < MoO₄²⁻; RuO₄²⁻ < RuO₄ < RuO₄; NbS₄³⁻ < MoS₄²⁻; TaS₄³⁻ < WS₄²⁻ < ReS₄; NbSe₄³⁻ < MoSe₄²⁻; TaSe₄³⁻ < WSe₄²⁻). Some minor defections for these trends are observed. For example, the primary stretching force constants for CrO₄⁴⁻ \simeq CrO₄³⁻ < CrO₄²⁻; FeO₄⁴⁻ > FeO₄³⁻ \simeq FeO₄²⁻ < FeO₄²⁻; WO₄⁴⁻ > WO₄²⁻.

2. Atomic number effect. The effects of increasing the atomic number of the X atom on the primary stretching force constant (keeping the oxidation state and the central atom M constant) for the main-family and the transition-metal tetrahalides are also apparent. For example, the primary force constant shows a decrease as one increases the atomic number of the halogen atom (for example, the primary stretching force constant for $MgCl_4^{2-} > MgBr_4^{2-} > MgBr_4^{2-} > CCl_4 > CCl_4 > CCl_4 > Cl_4$; AlCl₄ > AlBr₄ > AlRr₄ > AlRr₄ > SiCl₄ > SiBr₄ > SiBr₄ > Sil₄; GaCl₄ > GaBr₄ > Gal₄; GeCl₄ > GeBr₄ > Gel₄; PCl₄ + PBr₄; InCl₄ > InBr₄ > Inl₄; SnCl₄ > SnBr₄ > SnIl₄; TiCl₄ > TiBr₄ > TiBr₄ > TiBr₄ > MnBr₄²⁻ > MnBr₄²⁻ > MnBr₄ - CdBr₄ > CdBr

Similar trends are observed in the thio and seleno series (e.g. $VO_4^{3-} > VS_4^{3-} > VSe_4^{3-}$; $NbS_4^{3-} > NbSe_4^{3-}$; $MoS_4^{2-} > MoSe_4^{2-}$; $TaS_4^{3-} > TaSe_4^{2-}$; $WS_4^{2-} > WSe_4^{2-}$).

The effects of atomic number on the primary stretching force constants as the atomic number of M is increased and the atomic number of X is kept constant (oxidation state also constant) do not show systematic changes. For the main-family tetrahalides an increase in the force constant occurs from the carbon tetrahalides to the silicon tetrahalides followed by a decrease in going to Ge, Sn, and Pb. Similar effects are noted with the B, Al, Ga, In and Tl series. The same results were observed by Heath and Linnett 38, who accounted for the results in terms of increased repulsive forces occurring in the carbon and boron halides which cause a distortion in the central atom-halogen bond which weakens it to a greater extent than when the central atom is larger (for example, the primary stretching force constants for BCl_a < $AlCl_4$ $\leq GaCl_4$ $\geq InCl_4$ $\geq TlCl_4$; $CCl_4 \leq SiCl_4 \geq GeCl_4 \geq SnCl_4 \geq PbCl_4$; PCl_4 $\geq PbCl_4$; PCl_4 $AsCl_4^+ > SbCl_4^+$; $CBr_4 < SiBr_4 > GeBr_4 > SnBr_4$; $Cl_4 < Sil_4 \simeq Gel_4 \simeq Snl_4$). As one proceeds to the transition-metal tetrahalides some evidence exists that the primary stretching force constant is greater for the third transition series than for the second or first transition series (for example, the primary stretching force constant for $HfCl_a > ZrCl_a$; $HfBr_a > ZrBr_a \cong$ $TiBr_4$; $HfI_4 > ZrI_4 \cong TiI_4$; $TaS_4^{3-} > NbS_4^{3-} > VS_4^{3-}$; $WS_4^{2-} > MoS_4^{2-}$; $TaSe_4^{3-} > NbSe_4^{3-} > NbSe_4^{3-}$ VSe₄³⁻; WSe₄²⁻ > MoSe₄²⁻). Similar results were recently reported ²⁶ for the octahedral hexahalogen molecules. This is consistent with observations that more stable complexes are found in the order of third transition series > second transition series > first transition series. The behavior previously reported for Group IIB compounds 39 is also observed in this work for the zinc family chlorides (e.g. HgCl₄²⁻> CdCl₄²⁻> ZnCl₄²⁻).

The effect of the transition series is also demonstrated in the transition-metal oxyanions. In the case of the transition-metal oxyanions the third transition series representatives show a higher primary stretching force constant than that of the second or first transition series (the primary stretching force constant for $WO_4^{2-} > MoO_4^{2-} > CrO_4^{2-}$; $ReO_4^{-} > TcO_4^{-} > MnO_4^{-}$; $OsO_4 > RuO_4$; $RuO_4^{-} > FeO_4^{-}$; $RuO_4^{2-} > FeO_4^{2-}$; $WO_4^{4-} > McO_4^{4-} > CrO_4^{4-}$; $ReO_4^{3-} > MnO_4^{3-}$; $HfO_4^{4-} > ZrO_4^{4-} > TiO_4^{4-}$). These trends may be due to the greater amount of π -bonding occurring for the third-row compared with the second-row or first-row transition metal compounds 40,41 .

In the main-family oxyanion series the primary stretching force constant is observed to behave erratically as the atomic number of the central atom increases, although a tendency toward a decrease is observed in Group IIA (the primary stretching force constants for $SO_4^{2-} > SeO_4^{2-} > TeO_4^{2-}$).

3. Physical state of matter. For several molecules a comparison of the primary stretching force constant with the state of matter is possible (using K in the OVFF or UBFF). It is observed that the force constant (gas) > force constant (liquid) \simeq force constant (solid) in the case of CCl₄, SiCl₄, GeCl₄, and SnCl₄. For SiBr₄, GeBr₄, SnBr₄, and Gel₄ the force constant (gas) > force constant (liquid). For Sil₄ the force constant (gas) > force constant (solid). For PbCl₄ the force constant (liquid) \simeq force constant (solid). Snl₄ appears to be the only compound that does not follow this trend.

TABLE 17
Force constants for transition-metal oxyanions (mdyne/A)

Force field	IVB	VB	VIB
	1104 ⁴	VO4 ^{3-*}	CrO4 ²⁻⁸ (aqueous soin.)
OVFF	3.53, 0.44, 0.47	3.42, 0.02, 0.78	4.79, 0.39, 0.51
UBFF	3.47, 0.13, 0.50	3.55, 0.05, 0.71	4.86, 0.19, 0.47
VFF	4.10, 0.45, 0.42, 0.07	4.52, 0.64, 0.36, -0.003	5.48, 0.43, 0.42, 0.02
	ZrO4 ⁴⁻		MoO ₄ ^{2-*}
DVF F	5.29, 0.90, 0.15		4.77, 0.06, 0.72
JBFF	5.16, 0.32, 0.22		4.87, 0.05, 0.67
SVFF	5.50, 0.13, 0.52, 0.09		5.94, 0.55, 0.35, 0.02
	HfO₄ ^{4−}		WO42-*
OVFF	5.27, 0.92, 0.16		5.01, 0.10, 0.79
JBFF	5.01, 0.29, 0.27		5.03, 0.04, 0.79
SVFF	5.51, 0.15, 0.56, 0.11		6.42, 0.58, 0.41, 0.04
		VO44-*	CrO4 ^{2-*} (melt)
DVFF		3.61, 0.32, 0.65	4.75, 0.54, 0.49
UBFF		3.53, 0.06, 0.69	4.80, 0.20, 0.46
VFF		4.46, 0.61, 0.42, 0.0\$	5.40, 0.41, 0.44, 0.03
			CrO4 ^{3-*}
OVEF			4.70, 0.27, 0.43
BFF			4.55, 0.04, 0.51
VFF			5.25, 0.43, 0.32, 0.05
			0044-
VFF			4.50, 0.70, 0.41
BFF			4.50, 0.26, 0.41
VFF			5.02, 0.37, 0.51, 0.06
			MoO ₄ 4-*
VFF			4.77, 0.24, 0.28
ВFF			4.67, 0.26, 0.33
VFF			5.19, 0.24, 0.49, 0.08
			WO4 ^{4-*}
VFF			5.87, 0.93, 0.11
BFF		•	5.62, 0.31, 0.21
VFF			6.03, 0.11, 0.53, 0.10
VFF			
BFF			

VIIB	VIII		_
MnO ₄	FeO4 *	CoO ₄ ⁴⁻	
5.41, 0.83, 0.30 5.36, 0.32, 0.34 5.80, 0.27, 0.58, 0.09	5.10, 0.03, 0.71 5.25, 0.06, 0.62 8.17, 2.61, 0.33, -0.002	4.79, 0.53, 0.28 4.78, 0.19, 0.29 5.17, 0.24, 0.36, 0.04	
TcO4	RuO ₄ - •		
5.93, 0.35, 0.50 6.11, 0.19, 0.41 6.75, 0.36, 0.37, -0.004	5.28, 0.37, 0.30 5.36, 0.15, 0.27 5.77, 0.22, 0.28, 0.015		
ReO4 * (aqueous soln.)			
6.43, 0.30, 0.62 6.46, 0.13, 0.61 7.53, 0.45, 0.43, 0.04			
MnO ₄ ^{2-*}	FeO ₄ ^{2-*}		
4.69, 0.36, 0.39 4.79, 0.19, 0.33 5.24, 0.32, 0.33, -0.002	3.96, 0.35, 0.46 4.08, 0.14, 0.39 4.66, 0.78, 0.38, 0.00		
MnO ₄ ^{3-*}	FeO4 ^{3-¢}		
3.22, -0.11, 0.98 3.33, -0.01, 0.92 4.66, 0.79, 0.38, 0.00	4.20, 0.38, 0.34 4.06, 0.09, 0.42 4.63, 0.35, 0.35, 0.07		
ReO4 (solid)	FeO4*		
6.96, 0.76, 0.36 6.64, 0.21, 0.50 7.54, 0.35, 0.55, 0.10	4.85, 0.48, 0.15 4.76, 0.16, 0.20 5.04, 0.14, 0.31, 0.05		
ReO ₄ ^{3-*}	RuO4 ^{2-*} (K salt)	RuO4 ^{2-*} (aqueous soln.)	RuO4 ^{2-*} (Ba salt)
6.23, 0.76, 0.04 5.87, 0.23, 0.11 6.14, 0.01, 0.40, 0.09	4.41, 0.36, 0.45 4.49, 0.17, 0.41 5.14, 0.34, 0.37, 0.02	5.15, 0.58, 0.27 5.19, 0.25, 0.25 5.58, 0.20, 0.38, 0.02	5.21, 0.60, 0.26 5.26, 0.27, 0.23 5.63, 0.19, 0.38, 0.02
	RuO4 (liq.)	RuO4 (solid)	
	6.24, 0.58, 0.29 6.31, 0.26, 0.26 6.71, 0.21, 0.39, 0.02	6.32, 0.60, 0.25 6.38, 0.26, 0.22 6.72, 0.18, 0.38, 0.02	
	OsO4 (gas)	0104 (liq.)	OsO4 (wlid)
	7.39, 0.60, 0.36 7.45, 0.23, 0.34 8.03, 0.25, 0.41, 0.03	7.27, 0.56, 0.38 7.28, 0.23, 0.38 10.59, 2.92, 0.44, 0.04	7.22, 0.54, 0.38 7.29, 0.24, 0.36 7.91, 0.27, 0.43, 0.03

TABLE 18

Force constants for transition-metal thio and seleno tetrahedral anions (mdyne/A)

Force field	VB	VIB	VIIB
	VS4 ³⁻		
OVFF	2.03, 0.21, 0.26		
UBFF	2.08, 0.12, 0.23		
GVFF	2.30, 0.26, 0.22, -0.02		
	NbS4 ³⁻	MoS ₄ ²⁻	
OVFF	2.07, 0.14, 0.28	2.72, 0.25, 0.34	
UBFF	2.14, 0.05, 0.24	2.81, 0.11, 0.28	
GVFF	2.45, 0.23, 0.16, -0.004	3.18, 0.27, 0.23, -0.005	
	TaS₄³−	WS42-	ReS ₄
OVFF	2.15, 0.19, 0.31	2.98, 0.23, 0.39	3.28, 0.31, 0.37
UBFF	2.17, 0.06, 0.30	3.01, 0.07, 0.35	3.32, 0.11, 0.35
GVFF	2.64, 0.25, 0.20, 0.009	3.56, 0.29, 0.24, 0.01	3.87, 0.29, 0.28, 0.01
	VSe4 ³⁻		
OVFF	1.75, 0.23, 0.20		
UBFF	1.75, 0.11, 0.16		
GVFF	1.86, 0.21, 0.18, -0.03		
	NbSe43-	MoSe ₄ ²⁻	
OVFF	2.02, 0.14, 0.18	2.32, 0.26, 0.19	
UBFF	2.06, 0.07, 0.13	2.38, 0.13, 0.14	
GVFF	2.18, 0.16, 0.12, -0.02	2.51, 0.17, 0.18, -0.02	
	TaSe43-	WSe ²⁻	
OVFF	2.07, 0.16, 0.22	2,60, 0.14, 0.29	
UBFF	2.14, 0.07, 0.17	2.69, 0.06, 0.23	
GVFF	2.34, 0.18, 0.15, -0.008	2.96, 0.24, 0.14, -0.009	

(b) Summary

Because the previously discussed difficulties involved for the tetrahedral molecules are so severe, it is suggested that the force constants obtained in this work are most useful only on a comparative basis.

The use of the primary stretching force constant as a measure of bond strength has been suggested 26,37 . We observe with a large number of data that the primary stretching force constant increases with an increase in oxidation state. Additionally, the primary stretching force constant decreases as the atomic number of the X atom increases in MX_4^n -type molecules or anions, where X = halogen, oxygen, sulfur or selenium. If X is kept constant

TABLE 19 Force constants for miscellaneous T_d molecules (mdyne/A)

Force field			
	B(OH)4		
OVFF UBFF GVFF	2.11, 0.59, 0.90° 2.08, 0.16, 0.92 Diverges		
	Al(OH)4		
OVFF UBFF GVFF	2.52, 0.29, 0.32 2.58, 0.16, 0.28 2.84, 0.32, 0.28, -0.02		
	Zn{OH}_4		
OVFF UBFF GVFF	2.30, 0.32, ~0.02 2.28, 0.76, ~0.02 2.28, ~0.02, 0.31, 0.006		
	XeO4 (solid)	XeO4 (gas)	
OVFF UBFF GVFF	6.18, 0.88, ~0.16 6.00, 0.31, ~0.08 5.93, ~0.13, 0.34, 0.05	6.34, 0.84, ~0.16 6.13, 0.30 ~0.07 6.09, ~0.14, 0.35, 0.06	
	UF ₄		
OVFF UBFF GVFF	-0.07, 0.09, 1.05 -0.05, 0.04, 1.05 2.38, 0.61, 0.15, -0.14		
	A\$S4 ³⁻		
OVFF UBFF GVFF	1.89, 0.29, 0.23 1.89, 0.11, 0.24 2.13, 0.23, 0.28, 0.05		
	SbS4 ³⁻		
OVFF UBFF GVFF	1.86, 0.24, 0.17 1.86, 0.10, 0.17 2.79, 0.84, 0.20, 0.03		

and the atomic number of the central atom is increased in main-family tetrahalides, the primary stretching force constant shows an initial increase from $C \rightarrow Si$ or $B \rightarrow Al$, and then a decrease as one proceeds down the main group. For transition MX_4^n -type molecules and anions the primary stretching force constant is greatest for the third transition series and de-

creases in going to the second and first transition series. Similar observations are made for the transition-metal oxyanions.

(iii) Frequency trends

For > 90% of the molecules studied $\nu_3 > \nu_1$. The largest number of examples which showed $\nu_1 > \nu_3$ appeared for the transition-metal oxyanions. In most of the cases where $\nu_3 > \nu_1$ then $\nu_4 > \nu_2$. Only a few examples exist where $\nu_2 > \nu_4$, and these occur for the transition-metal oxyanions. It is apparent that ν_1 is a better measure of K or f_r than is ν_3 . This has recently also been recognized by Gonzalez-Vilchez and Griffith ³³ for the transition-metal oxyanions.

(iv) Potential energy distribution (PED)

(a) The tetrahalides

The calculated PED for the OVFF and the UBFF indicates that ν_i is predominantly a stretching vibration due to the force constant K. However, as the mass of the central atom (M) is decreased, maintaining that of the halogen (X) constant, the importance of the repulsion constant F increases. When the mass of M is greater than the mass of X, ν_i becomes predominantly due to the repulsion force constant. The degree of repulsion also increases from $F^- \rightarrow I^-$.

The ν_2 vibration is predominantly due to the repulsion force constant for all of the tetrahalides, decreasing as the mass of the halogen increases.

The ν_3 vibration is predominantly due to the stretching force constant K, although a slight mixture of F and H are present. The latter become insignificant as the mass of the halogen increases.

The ν_4 vibration is predominantly due to the repulsion force constant with a mixture of K and H, with H becoming more important as the mass of the halogen increases.

(b) The oxy-, thio- and seleno-anions

For these anions the vibrations appear to be purer than those found for the tetrahalides. The modes ν_1 and ν_3 are mainly stretch, and ν_2 and ν_4 are a mixture of repulsion and bend, with the bending force constant becoming more important as the mass of the ligand increases.

(c) The hydroxides $-M(OH)_a^n$

Some question concerning the validity of the symmetry involving these anions has been raised ⁴². All modes seem to show a predominant dependence on the repulsion constants with the exception of ν_3 , which is a mixture of K, F and H with K predominating.

REFERENCES

1 A. Müller and B. Krebs, J. Mol. Spectrosc., 24 (1967) 180.

- 2 B. Krebs, A. Müller and A. Fadini, J. Mol. Spectrosc., 24 (1967) 198.
- 3 T. Shimanouchi, in D. Henderson (Ed.), The Molecular Force Field in Physical Chemistry An Advanced Treatise, Academic Press, New York, 1970.
- 4 J.R. Ferraro and J.S. Ziomek, Introductory Group Theory and Its Application to Molecular Structure, Flenum Press, New York, 1969.
- 5 L.H. Jones, Inorganic Vibrational Spectroscopy, M. Dekker, New York, 1971.
- 6 D. Steele, Theory of Vibrational Spectroscopy, W.B. Saunders, Philadelphia, 1971.
- 7 P. LaBonville, J.R. Ferraro, M.C. Wall and L.J. Basile, Coord. Chem. Rev., 7 (1972) 257,
- 8 J.W. Linnett, in A.J. Downs, D.A. Long and A.K. Staveley (Eds.), Molecular force fields and valency, Essays in Structural Chemistry, Macmillan, London, 1971.
- 9 H.C. Urey and C.A. Bradley, Phys. Rev., 38 (1931) 1969.
- 10 I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 18 (1962) 89, 101.
- 11 T. Hiraishi, I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20 (1962) 819.
- 12 D.F. Heath and J.W. Linnett, Trans. Faraday Soc., 44 (1948) 873, 878, 888; 45 (1949) 264.
- 13 J.W. Linnett and P.J. Wheatley, Trans. Faraday Soc., 45 (1949) 33.
- 14 J.H. Schachtschneider and R.G. Snyder, Spectrochim. Acta, 19 (1963) 117.
- 15 W.A. Yeranos, Bull. Soc. Chim. Belg., 74 (1965) 414.
- 16 G.M. Begun, C.R. Boston, G. Torsi and G. Mamantov, Inorg. Chem., 10 (1971) 886.
- 17 D.E. Mann, T. Shimanouchi, J.J. Meal and L. Fano, J. Chem. Phys., 27 (1957) 43.
- 18 J.T.R. Dunsmuir and A.P. Lane, J. Chem. Soc. A. (1971) 2781.
- 19 J.T.R. Dunsmuir and A.P. Lane, J. Chem. Soc. A, (1971) 404.
- 20 B.R. Sundheim and L.V. Woodcock, Chem. Phys. Lett., 15 (1972) 191.
- 21 D.F. Heath and J.W. Linnett, Trans. Faraday Soc., 44 (1948) 484.
- 22 W.P. Griffith, Coord. Chem. Rev., 5 (1970) 459.
- 23 A. Müller and A. Fadini, Spectrochim. Acta, 22 (1966) 1523.
- 24 R.S. McDowell and M. Goldblatt, Inorg. Chem., 10 (1971) 625.
- 25 A. Müller, R. Ahrlich and B. Krebs, Z. Naturforsch. B, 21 (1966) 719.
- 26 B. Krebs and A. Müller, J. Mol. Spectrosc., 22 (1962) 290.
- 27 D.M. Adams, Metal-Ligand and Related Vibrations, E. Arnold, London, 1967.
- 28 R.J.H. Clark, in V. Gutmann (Ed.), Halogen Chemistry, Academic Press, New York, 1968.
- 29 I.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971.
- 30 H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer-Verlag, Berlin, 1966.
- 31 P. Tarte and J. Preudhomme, Spectrochim, Acta, Part A, 26 (1970) 2207.
- 32 T.G. Spiro, Inorg. Chem., 4 (1965) 1290.
- 33 F. Gonzalez-Vilchez and W.P. Griffith, J. Chem. Soc. Dalton, (1972) 1416.
- 34 A.S. Quist, J.B. Bates and G.E. Boyd, J. Phys. Chem., 76 (1972) 78.
- 35 L.A. Woodward, Trans. Faraday Soc., 54 (1958) 1271.
- 36 H. Siehert, Z. Anorg. Allg. Chem., 274 (1953) 34.
- 37 I. Wharf and D.F. Shriver, Inorg. Chem., 8 (1969) 914.
- 38 D.F. Heath and J.W. Linnett, Trans. Faraday Soc., 44 (1948) 556.
- 39 D.A. Long and I.Y.H. Chan, Trans. Faraday Soc., 58 (1962) 2325.
- 40 J.H. Canterford and R. Colton, Halides of the Second and Third Row Transition Metals, Wiley-Interscience, New York, 1968.
- 41 F.A. Cotton and R.M. Wing, Inorg. Chem., 4 (1965) 867.
- 42 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience, New York, 1962.
- 43 J. Goubeau and W. Bues, Z. Anorg. Allg. Chem., 268 (1952) 221.
- 44 N.N. Greenwood, J. Chem. Soc. A, (1959) 3811.
- 45 A.S. Quist, J.B. Bates and G.E. Boyd, J. Chem. Phys., 54 (1971) 4896.
- 46 T. Shimanouchi, National Standard Reference Data Series, Nat. Bur. Stand. (U.S.) 17, NSRDS-NBS 17, March 1968.
- 47 R.J.H. Clark and D.M. Rippon, Chem. Commun., (1971) 1295.

- 48 A.D. Caunt, L.N. Short and L.A. Woodward, Trans. Faraday Soc., 48 (1952) 873.
- 49 A.D. Caunt, L.N. Short and L.A. Woodward, Nature, 168 (1951) 557.
- 50 L.E. Alexander and I.R. Beattie, J. Chem. Soc. Dalton, (1972) 1745.
- 51 V.A. Maroni, J. Chem. Phys., 55 (1971) 4789.
- 52 J.A. Creighton, J. Chem. Soc., London, (1965) 6589.
- 53 G. Torsi, G. Mamantov and G.M. Begun, Inorg. Nucl. Chem. Lett., 6 (1970) 553.
- 54 R.H. Bradley, P.N. Brier and D.E.H. Jones, J. Chem. Soc. A, (1971) 1397.
- 55 L.A. Woodward and A.A. Nord, J. Chem. Soc., London, (1956) 3721.
- 56 L.A. Woodward and M.J. Taylor, J. Chem. Soc., London, (1956) 4473.
- 57 B.P. Singh, J. Mol. Spectrosc., 33 (1970) 169.
- 58 D.A. Long, T.V. Spencer, D.N. Waters and L.A. Woodward, Proc. Roy. Soc., Ser. A, 240 (1957) 499.
- 59 R. J.H. Clark and C.J. Willis, Inorg. Chem., 10 (1971) 1118.
- 60 H.F. Shurvell, Spectrochim. Acta, Part A, 27 (1971) 2375.
- 61 R.J.H. Clark and B.K. Hunter, J. Chem. Soc. A, (1971) 2999.
- 62 J.T. Neu and W.D. Gwinn, J. Amer. Chem. Soc., 70 (1948) 3463.
- 63 G.L. Carlson, Spectrochim. Acta, 19 (1963) 1291.
- 64 J. Weidlein and K.Z. Dehnicke, Z. Anorg. Allg. Chem., 337 (1965) 113.
- 65 K. Dehnicke and J. Weidlein, Chem. Ber., 98 (1965) 1087.
- 66 A. Müller, N. Weinstock, N. Mohan, C.W. Schläpfer and K. Nakamoto, Appl. Spectrosc., 27 (1973) 4.
- 67 L.A. Woodward and A.A. Nord, J. Chem. Soc., London, (1955) 2655.
- 68 L.A. Woodward and P.T. Bill, J. Chem. Soc., London, (1955) 1699.
- 69 M.L. Delwaulle, C.R. Acad. Sci., 238 (1954) 2522.
- 70 T.E. Thomas and W.J. Orville-Thomas, J. Inorg. Nucl. Chem., 34 (1972) 839.
- 71 H. Gerding and P.C. Nobel, Rec. Trav. Chim. Pays-Bas, 77 (1958) 472.
- 72 H. Stammtreich, Y. Tavares and D. Bassi, Spectrochim. Acta, 17 (1961) 661.
- 73 L.A. Woodward and G.H. Singer, J. Chem. Soc. A, (1958) 716.
- 74 H. Stammreich, R. Forneris and Y. Tavares, J. Chem. Phys., 25 (1956) 1278.
- 75 N.J. Hawkins and D.R. Carpenter, J. Chem. Phys., 23 (1955) 1700.
- 76 R.J.H. Clark, B.K. Hunter and D.M. Rippon, Inorg. Chem., 11 (1972) 56.
- 77 R.J.H. Clark, B.K. Hunter and P.D. Mitchell, J. Chem. Soc. Faraday II, (1972) 476.
- 78 J.S. Avery, C.D. Burbridge and D.M.L. Goodgame, Spectrochim, Acta, Part A, 24 (1968) 1721.
- 79 I.R. Beattie, T.R. Gilson and G.A. Ozin, J. Chem. Soc. A, (1969) 534.
- 80 D.F.C. Morris, E.L. Short and D.N. Waters, J. Inorg. Nucl. Chem., 25 (1963) 975.
- 81 J.E.D. Davies and D.A. Long, J. Chem. Soc. A, (1968) 2054.
- 82 J.E.D. Davies and D.A. Long, J. Chem. Soc. A, (1971) 1273.
- 83 G.J. Jany and D.W. Janes, J. Chem. Phys., 38 (1963) 905.
- 84 H.G.M. Edwards, M.J. Ware and L.A. Woodward, Chem. Commun., (1968) 540.
- 85 M.L. Dewaulle, Bull. Soc. Chim. Fr., (1955) 1294.
- 86 J.A. Rolfe, D.E. Sheppard and L.A. Woodward, Trans. Faraday Soc., 50 (1954) 1275.
- 87 R.J.H. Clark and C.J. Willis, J. Chem. Soc. A, (1971) 838.
- 88 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd edn., Wiley-Interscience, New York, 1970, p. 111.
- 39 E. Steger and W. Schmidt, Ber. Bunsenges. Phys. Chem., 68 (1964) 102.
- 90 H. Siebert, Z. Anorg. Alig. Chem., 275 (1954) 225.
- 91 M.M. Brooker, A.S. Quist and G.E. Boyd, Chem. Phys. Lett., 9 (1971) 242.
- 92 E.V. Appleman, Inorg. Chem., 8 (1969) 223.
- 93 H. Siebert and G. Wieghardt, Spectrochim. Acta, Part A, 27 (1971) 1677.
- 94 H. Stammreich, D. Bassi and O. Sala, Spectrochim. Acta, 12 (1958) 403.
- 95 P.J. Hendra, Spectrochim. Acta, Part A, 24 (1968) 125.
- 96 F.L. Whitney, Inorg. Chim. Acta, 5 (1971) 260.
- 97 W.P. Griffith, J. Chem. Soc. A, (1968) 1663.
- 98 I.W. Levin and S. Abramowitz, J. Chem. Phys., 50 (1969) 4860.
- 99 R.A. Johnson, M.T. Rogers and G.E. Leroi, J. Chem. Phys., 56 (1972) 789.
- 100 A. Müller and B. Krebs, Z. Naturforsch. B, 21 (1966) 3.

- 101 R.H. Busey and O.L. Keller, J. Chem. Phys., 41 (1964) 215.
- 102 I.W. Levin, Inorg. Chem., 8 (1969) 1018.
- 103 I.L. Huston and H.H. Claassen, J. Chem. Phys., 52 (1970) 5646.
- 104 A. Müller, B. Krebs, W. Rittner and M. Stockburger, Ber. Bunsenges. Phys. Chem., 71 (1967) 182.
- 105 A. Müller, K.H. Schmidt and K.H. Tytko, Spectrochim. Acta, Part A, 28 (1972) 381.
- 106 N.K. Sanyal, A.N. Pandey and H.S. Singh, J. Mol. Spectrosc., 30 (1969) 144.
- 107 J.O. Edwards, G.C. Morrison, V.F. Ross and J.W. Schultz, J. Amer. Chem. Soc., 77 (1955) 266.
- 108 E.R. Lippincott, J.A. Psellos and M.C. Tobin, J. Chem. Phys., 20 (1952) 536.
- 109 W. Krasser and H.W. Nurnberg, Spectrochim. Acta, Part A, 26 (1970) 1059.
- 110 R.S. McDowell and L.B. Asprey, J. Chem. Phys., 57 (1972) 3062.
- 111 H.F. Shurvell, Can. J. Spectrosc., 17 (1972) 109.